Smith Paul, Hu Jiayue, Griffin Anthony, Robertson Mark, Güillen Obando Alejandro, Bounds Ethan, Dunn Carmen B, Ye Changhuai, Liu Ling, Qiang Zhe
School of Polymer Science and Engineering, The University of Southern Mississippi, 118 College Drive, Hattiesburg, MS, 39406, USA.
Department of Mechanical Engineering, Temple University, 1801N Broad Street, Philadelphia, PA, 19122, USA.
Nat Commun. 2024 Jan 29;15(1):838. doi: 10.1038/s41467-024-45211-4.
Despite groundbreaking advances in the additive manufacturing of polymers, metals, and ceramics, scaled and accurate production of structured carbons remains largely underdeveloped. This work reports a simple method to produce complex carbon materials with very low dimensional shrinkage from printed to carbonized state (less than 4%), using commercially available polypropylene precursors and a fused filament fabrication-based process. The control of macrostructural retention is enabled by the inclusion of fiber fillers regardless of the crosslinking degree of the polypropylene matrix, providing a significant advantage to directly control the density, porosity, and mechanical properties of 3D printed carbons. Using the same printed plastic precursors, different mechanical responses of derived carbons can be obtained, notably from stiff to highly compressible. This report harnesses the power of additive manufacturing for producing carbons with accurately controlled structure and properties, while enabling great opportunities for various applications.
尽管在聚合物、金属和陶瓷的增材制造方面取得了突破性进展,但结构化碳的规模化和精确生产在很大程度上仍未得到充分发展。这项工作报告了一种简单的方法,使用市售聚丙烯前驱体和基于熔丝制造的工艺,从打印状态到碳化状态,以非常低的尺寸收缩率(小于4%)生产复杂的碳材料。无论聚丙烯基体的交联程度如何,通过加入纤维填料都能够控制宏观结构的保留,这为直接控制3D打印碳的密度、孔隙率和机械性能提供了显著优势。使用相同的打印塑料前驱体,可以获得衍生碳的不同机械响应,特别是从刚性到高度可压缩的响应。本报告利用增材制造的力量来生产具有精确控制结构和性能的碳,同时为各种应用带来了巨大机遇。