Smith Paul, Wu Jiachun, Griffin Anthony, Jones Kaleb, Aguinaga Jeff, Bounds Ethan, Patton Derek, Xiang Yizhi, Qiang Zhe
School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS, 39406, USA.
Dave C. Swalm School of Chemical Engineering, Mississippi State University, Mississippi State, MS, 39762, USA.
Adv Sci (Weinh). 2025 May;12(20):e2413149. doi: 10.1002/advs.202413149. Epub 2025 Apr 27.
Electrified thermal chemical synthesis plays a critical role in reducing energy consumption and enabling the industrial decarbonization. While Joule heating offers a promising alternative to gas-burning furnace systems by directly heating substrates via renewable energy supply, most approaches can only heat the reactor, not the catalytic sites. This limitation stems from the lack of methods to on-demand create Joule heaters containing in situ loaded catalytic nanoparticles. This work introduces a scalable platform for producing carbonaceous Joule heaters embedded with catalytic nanoparticles from 3D-printed polypropylene precursors, prepared through crosslinking, metal nitration immersion, and pyrolysis steps. Specifically, sulfonate groups on crosslinked PP can bind with metal ions, yielding well-dispersed, nanosized particles within a carbon structure that maintains macroscopic dimensional accuracy throughout the manufacturing. The approach is modular, allowing control over particle size and composition. Structured carbon with in situ loaded nickel nanoparticles demonstrates efficient Joule heating, high catalytic activity, and significantly reduced activation energy for catalytic ammonia decomposition. This work provides an innovative material and manufacturing platform to produce structured, catalytically active Joule heaters for decarbonization of chemical synthesis and energy production.
电热化学合成在降低能源消耗和实现工业脱碳方面发挥着关键作用。虽然焦耳加热通过可再生能源供应直接加热基板,为燃气炉系统提供了一种有前景的替代方案,但大多数方法只能加热反应器,而不能加热催化位点。这一限制源于缺乏按需制造包含原位负载催化纳米颗粒的焦耳加热器的方法。这项工作引入了一个可扩展的平台,用于从3D打印的聚丙烯前驱体制备嵌入催化纳米颗粒的碳质焦耳加热器,该前驱体通过交联、金属硝化浸渍和热解步骤制备。具体而言,交联聚丙烯上的磺酸基团可以与金属离子结合,在碳结构中产生分散良好的纳米颗粒,在整个制造过程中保持宏观尺寸精度。该方法具有模块化特点,允许控制颗粒尺寸和组成。负载原位镍纳米颗粒的结构化碳表现出高效的焦耳加热、高催化活性以及催化氨分解的活化能显著降低。这项工作提供了一个创新的材料和制造平台,用于生产结构化、具有催化活性的焦耳加热器,以实现化学合成和能源生产的脱碳。