Suppr超能文献

通过选择性激光烧结制备用于电化学储能的按需多孔碳

On-Demand Porous Carbon Fabrication via Selective Laser Sintering for Electrochemical Energy Storage.

作者信息

Griffin Anthony, Yang Muxuan, Frame Parker, Xu Weinan, Qiang Zhe

机构信息

School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States.

School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States.

出版信息

ACS Appl Eng Mater. 2025 Aug 7;3(8):2391-2401. doi: 10.1021/acsaenm.5c00297. eCollection 2025 Aug 22.

Abstract

Manufacturing structured carbon with tunable three-dimensional (3D) architectures remains a major hurdle for widescale use due to process complexity and high cost of current methods. This work demonstrates the fabrication of structured carbon using selective laser sintering (SLS)-based additive manufacturing, enabling control over both the macroscopic geometry and the nanoscale pore textures. Our process employs polyethylene (PE) as the carbon precursor and only involves steps of printing, cross-linking, and pyrolysis. The incomplete coalescence of PE particles during printing results in the formation of a macroporous structure. Moreover, we demonstrate the production of 3D-printed carbon-cobalt nanocomposites through a simple metal immersion step prior to pyrolysis. The electrochemical properties of these structured carbons and carbon-cobalt nanocomposites were investigated, revealing enhanced performance attributed to the synergistic effects of electric double-layer capacitance and pseudocapacitance. Our method is resource-efficient, utilizes inexpensive precursors, and is capable of imparting functional nanoparticles to the carbon matrix. The resulting structured carbon-based electrodes exhibit high charge storage capacity, highlighting their potential for next-generation, 3D-printable electrochemical energy storage devices.

摘要

由于当前方法的工艺复杂性和高成本,制造具有可调三维(3D)结构的结构化碳仍然是大规模应用的主要障碍。这项工作展示了使用基于选择性激光烧结(SLS)的增材制造技术制造结构化碳,从而能够控制宏观几何形状和纳米级孔隙结构。我们的工艺采用聚乙烯(PE)作为碳前驱体,仅涉及打印、交联和热解步骤。打印过程中PE颗粒的不完全聚结导致形成大孔结构。此外,我们通过在热解之前进行简单的金属浸渍步骤,展示了3D打印碳 - 钴纳米复合材料的生产。对这些结构化碳和碳 - 钴纳米复合材料的电化学性能进行了研究,结果表明由于双电层电容和赝电容的协同效应,其性能得到了增强。我们的方法资源高效,使用廉价的前驱体,并且能够将功能性纳米颗粒赋予碳基体。由此产生的结构化碳基电极表现出高电荷存储容量,突出了它们在下一代3D可打印电化学储能装置中的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/feb4/12379160/4b9f2bb2bf99/em5c00297_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验