文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

空间转录组学揭示了代谢特征通过 iCAF 转化定义口腔鳞状细胞癌肿瘤免疫抑制微环境。

Spatial transcriptomics reveals that metabolic characteristics define the tumor immunosuppression microenvironment via iCAF transformation in oral squamous cell carcinoma.

机构信息

Department of Oral and Maxillofacial - Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China.

Department of Oral and Maxillofacial Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.

出版信息

Int J Oral Sci. 2024 Jan 30;16(1):9. doi: 10.1038/s41368-023-00267-8.


DOI:10.1038/s41368-023-00267-8
PMID:38287007
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10824761/
Abstract

Tumor progression is closely related to tumor tissue metabolism and reshaping of the microenvironment. Oral squamous cell carcinoma (OSCC), a representative hypoxic tumor, has a heterogeneous internal metabolic environment. To clarify the relationship between different metabolic regions and the tumor immune microenvironment (TME) in OSCC, Single cell (SC) and spatial transcriptomics (ST) sequencing of OSCC tissues were performed. The proportion of TME in the ST data was obtained through SPOTlight deconvolution using SC and GSE103322 data. The metabolic activity of each spot was calculated using scMetabolism, and k-means clustering was used to classify all spots into hyper-, normal-, or hypometabolic regions. CD4T cell infiltration and TGF-β expression is higher in the hypermetabolic regions than in the others. Through CellPhoneDB and NicheNet cell-cell communication analysis, it was found that in the hypermetabolic region, fibroblasts can utilize the lactate produced by glycolysis of epithelial cells to transform into inflammatory cancer-associated fibroblasts (iCAFs), and the increased expression of HIF1A in iCAFs promotes the transcriptional expression of CXCL12. The secretion of CXCL12 recruits regulatory T cells (Tregs), leading to Treg infiltration and increased TGF-β secretion in the microenvironment and promotes the formation of a tumor immunosuppressive microenvironment. This study delineates the coordinate work axis of epithelial cells-iCAFs-Tregs in OSCC using SC, ST and TCGA bulk data, and highlights potential targets for therapy.

摘要

肿瘤的进展与肿瘤组织的代谢和微环境的重塑密切相关。口腔鳞状细胞癌(OSCC)是一种代表缺氧肿瘤,具有异质性的内部代谢环境。为了阐明 OSCC 不同代谢区域与肿瘤免疫微环境(TME)之间的关系,对 OSCC 组织进行了单细胞(SC)和空间转录组学(ST)测序。通过使用 SC 和 GSE103322 数据对 SPOTlight 进行去卷积,从 ST 数据中获得 TME 的比例。使用 scMetabolism 计算每个点的代谢活性,并使用 k-means 聚类将所有点分类为高代谢、正常代谢或低代谢区域。与其他区域相比,高代谢区域的 CD4T 细胞浸润和 TGF-β 表达更高。通过 CellPhoneDB 和 NicheNet 细胞间通讯分析发现,在高代谢区域,成纤维细胞可以利用上皮细胞糖酵解产生的乳酸转化为炎症性癌相关成纤维细胞(iCAFs),并且 iCAFs 中 HIF1A 的增加表达促进 CXCL12 的转录表达。CXCL12 的分泌招募调节性 T 细胞(Tregs),导致微环境中 Treg 的浸润和 TGF-β的分泌增加,并促进肿瘤免疫抑制微环境的形成。本研究使用 SC、ST 和 TCGA 批量数据描绘了 OSCC 中上皮细胞-iCAFs-Tregs 的协调工作轴,并强调了治疗的潜在靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bded/10824761/5d58ca89ebc5/41368_2023_267_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bded/10824761/294eeb72048b/41368_2023_267_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bded/10824761/128e92e0fba9/41368_2023_267_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bded/10824761/edcd3315e29b/41368_2023_267_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bded/10824761/5d663cb06f02/41368_2023_267_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bded/10824761/5496e6c70926/41368_2023_267_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bded/10824761/35411efb2b6e/41368_2023_267_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bded/10824761/2a7324195c3e/41368_2023_267_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bded/10824761/0f8f50dc3d6f/41368_2023_267_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bded/10824761/dcd4b026e89e/41368_2023_267_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bded/10824761/31e84031db1b/41368_2023_267_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bded/10824761/5d58ca89ebc5/41368_2023_267_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bded/10824761/294eeb72048b/41368_2023_267_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bded/10824761/128e92e0fba9/41368_2023_267_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bded/10824761/edcd3315e29b/41368_2023_267_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bded/10824761/5d663cb06f02/41368_2023_267_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bded/10824761/5496e6c70926/41368_2023_267_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bded/10824761/35411efb2b6e/41368_2023_267_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bded/10824761/2a7324195c3e/41368_2023_267_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bded/10824761/0f8f50dc3d6f/41368_2023_267_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bded/10824761/dcd4b026e89e/41368_2023_267_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bded/10824761/31e84031db1b/41368_2023_267_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bded/10824761/5d58ca89ebc5/41368_2023_267_Fig11_HTML.jpg

相似文献

[1]
Spatial transcriptomics reveals that metabolic characteristics define the tumor immunosuppression microenvironment via iCAF transformation in oral squamous cell carcinoma.

Int J Oral Sci. 2024-1-30

[2]
Single-cell analysis reveals that cancer-associated fibroblasts stimulate oral squamous cell carcinoma invasion via the TGF-β/Smad pathway.

Acta Biochim Biophys Sin (Shanghai). 2022-9-25

[3]
Spatial Transcriptomic and Metabolomic Landscapes of Oral Submucous Fibrosis-Derived Oral Squamous Cell Carcinoma and its Tumor Microenvironment.

Adv Sci (Weinh). 2024-3

[4]
Cancer-associated fibroblasts promote an immunosuppressive microenvironment through the induction and accumulation of protumoral macrophages.

Oncotarget. 2017-1-31

[5]
Spatial transcriptomics reveals unique metabolic profile and key oncogenic regulators of cervical squamous cell carcinoma.

J Transl Med. 2024-12-31

[6]
Loss of RUNX3 expression inhibits bone invasion of oral squamous cell carcinoma.

Oncotarget. 2017-2-7

[7]
Interleukin-23 receptor defines T helper 1-like regulatory T cells in oral squamous cell carcinoma.

Immun Inflamm Dis. 2022-12

[8]
[ Promotes the Formation of Immunosuppressive Microenvironment in Oral Squamous Cell Carcinoma by CCR6 Regulatory T Cells: A Study of the Mechanisms Invovled].

Sichuan Da Xue Xue Bao Yi Xue Ban. 2025-1-20

[9]
Improving function of cytotoxic T-lymphocytes by transforming growth factor-β inhibitor in oral squamous cell carcinoma.

Cancer Sci. 2021-10

[10]
Role of tissue markers associated with tumor microenvironment in the progression and immune suppression of oral squamous cell carcinoma.

Med Oncol. 2023-9-20

引用本文的文献

[1]
Metabolic Plasticity and Cancer Stem Cell Metabolism: Exploring the Glycolysis-OXPHOS Switch as a Mechanism for Resistance and Tumorigenesis.

Stem Cell Rev Rep. 2025-8-29

[2]
Plasticity and Functional Heterogeneity of Cancer-Associated Fibroblasts.

Cancer Res. 2025-7-29

[3]
Spatiotemporal Heterogeneity of Tumor Glucose Metabolism Reprogramming: From Single-Cell Mechanisms to Precision Interventions.

Int J Mol Sci. 2025-7-18

[4]
Mapping Small Extracellular Vesicle Secretion Potential in Healthy Human Gingiva Using Spatial Transcriptomics.

Curr Issues Mol Biol. 2025-4-7

[5]
Cancer-associated fibroblasts as mediators of tissue microenvironment remodeling in cancer.

Curr Opin Cell Biol. 2025-7-14

[6]
Recent advances in biomarker detection of oral squamous cell carcinoma.

Front Oncol. 2025-6-19

[7]
Lactate Metabolism and Lactylation Modification: New Opportunities and Challenges in Cardiovascular Disease.

MedComm (2020). 2025-7-1

[8]
Bioinformatics identification and validation of m6A/m1A/m5C/m7G/ac4 C-modified genes in oral squamous cell carcinoma.

BMC Cancer. 2025-7-1

[9]
Lactate-Mediated Crosstalk Between Tumor Cells and Cancer-Associated Fibroblasts: Mechanisms and Therapeutic Opportunities.

Int J Mol Sci. 2025-6-11

[10]
Oral squamous cell carcinoma: Insights into cellular heterogeneity, drug resistance, and evolutionary trajectories.

Cell Biol Toxicol. 2025-6-12

本文引用的文献

[1]
Tissue-resident memory and circulating T cells are early responders to pre-surgical cancer immunotherapy.

Cell. 2022-8-4

[2]
Immunostimulatory Cancer-Associated Fibroblast Subpopulations Can Predict Immunotherapy Response in Head and Neck Cancer.

Clin Cancer Res. 2022-5-13

[3]
Immune effects of PI3K/Akt/HIF-1α-regulated glycolysis in polymorphonuclear neutrophils during sepsis.

Crit Care. 2022-1-28

[4]
Cancer statistics, 2022.

CA Cancer J Clin. 2022-1

[5]
ROS/PI3K/Akt and Wnt/β-catenin signalings activate HIF-1α-induced metabolic reprogramming to impart 5-fluorouracil resistance in colorectal cancer.

J Exp Clin Cancer Res. 2022-1-8

[6]
Single-cell RNA sequencing reveals a pro-invasive cancer-associated fibroblast subgroup associated with poor clinical outcomes in patients with gastric cancer.

Theranostics. 2022

[7]
Fibroblast pyruvate carboxylase is required for collagen production in the tumour microenvironment.

Nat Metab. 2021-11

[8]
Spatiotemporal Immune Landscape of Colorectal Cancer Liver Metastasis at Single-Cell Level.

Cancer Discov. 2022-1

[9]
Spatial transcriptomics at subspot resolution with BayesSpace.

Nat Biotechnol. 2021-11

[10]
Integrated analysis of multimodal single-cell data.

Cell. 2021-6-24

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索