Lu Haidong, Kim Dong-Jik, Aramberri Hugo, Holzer Marco, Buragohain Pratyush, Dutta Sangita, Schroeder Uwe, Deshpande Veeresh, Íñiguez Jorge, Gruverman Alexei, Dubourdieu Catherine
Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, NE, 68588-0299, USA.
Helmholtz-Zentrum Berlin für Materialien und Energie, Insitute Functional Oxides for Energy-Efficient Information Technology, Hahn Meitner Platz 1, 14109, Berlin, Germany.
Nat Commun. 2024 Jan 29;15(1):860. doi: 10.1038/s41467-024-44690-9.
HfO-based thin films hold huge promise for integrated devices as they show full compatibility with semiconductor technologies and robust ferroelectric properties at nanometer scale. While their polarization switching behavior has been widely investigated, their electromechanical response received much less attention so far. Here, we demonstrate that piezoelectricity in HfZrO ferroelectric capacitors is not an invariable property but, in fact, can be intrinsically changed by electrical field cycling. HfZrO capacitors subjected to ac cycling undergo a continuous transition from a positive effective piezoelectric coefficient d in the pristine state to a fully inverted negative d state, while, in parallel, the polarization monotonically increases. Not only can the sign of d be uniformly inverted in the whole capacitor volume, but also, with proper ac training, the net effective piezoresponse can be nullified while the polarization is kept fully switchable. Moreover, the local piezoresponse force microscopy signal also gradually goes through the zero value upon ac cycling. Density functional theory calculations suggest that the observed behavior is a result of a structural transformation from a weakly-developed polar orthorhombic phase towards a well-developed polar orthorhombic phase. The calculations also suggest the possible occurrence of a non-piezoelectric ferroelectric HfZrO. Our experimental findings create an unprecedented potential for tuning the electromechanical functionality of ferroelectric HfO-based devices.
基于HfO的薄膜在集成器件方面具有巨大潜力,因为它们与半导体技术完全兼容,并且在纳米尺度上具有强大的铁电性能。虽然它们的极化切换行为已得到广泛研究,但到目前为止,它们的机电响应受到的关注要少得多。在这里,我们证明了HfZrO铁电电容器中的压电性不是一个不变的特性,实际上可以通过电场循环在本质上发生改变。经受交流循环的HfZrO电容器会经历从原始状态下的正有效压电系数d到完全反转的负d状态的连续转变,与此同时,极化会单调增加。不仅d的符号可以在整个电容器体积内均匀反转,而且通过适当的交流训练,在极化保持完全可切换的同时,净有效压电响应可以被消除。此外,局部压电响应力显微镜信号在交流循环时也会逐渐经过零值。密度泛函理论计算表明,观察到的行为是从弱极化正交相到强极化正交相的结构转变的结果。计算还表明可能会出现非压电铁电体HfZrO。我们的实验结果为调节基于HfO的铁电器件的机电功能创造了前所未有的潜力。