Dutta Sangita, Buragohain Pratyush, Glinsek Sebastjan, Richter Claudia, Aramberri Hugo, Lu Haidong, Schroeder Uwe, Defay Emmanuel, Gruverman Alexei, Íñiguez Jorge
Materials Research and Technology Department, Luxembourg Institute of Science and Technology, 5 avenue des Hauts-Fourneaux, L-4362, Esch/Alzette, Luxembourg.
Department of Physics and Materials Science, University of Luxembourg, 41 Rue du Brill, Belvaux, L-4422, Luxembourg.
Nat Commun. 2021 Dec 15;12(1):7301. doi: 10.1038/s41467-021-27480-5.
Because of its compatibility with semiconductor-based technologies, hafnia (HfO) is today's most promising ferroelectric material for applications in electronics. Yet, knowledge on the ferroic and electromechanical response properties of this all-important compound is still lacking. Interestingly, HfO has recently been predicted to display a negative longitudinal piezoelectric effect, which sets it apart from classic ferroelectrics (e.g., perovskite oxides like PbTiO) and is reminiscent of the behavior of some organic compounds. The present work corroborates this behavior, by first-principles calculations and an experimental investigation of HfO thin films using piezoresponse force microscopy. Further, the simulations show how the chemical coordination of the active oxygen atoms is responsible for the negative longitudinal piezoelectric effect. Building on these insights, it is predicted that, by controlling the environment of such active oxygens (e.g., by means of an epitaxial strain), it is possible to change the sign of the piezoelectric response of the material.
由于与基于半导体的技术具有兼容性,氧化铪(HfO)是当今电子应用中最具前景的铁电材料。然而,对于这种极为重要的化合物的铁电和机电响应特性,目前仍缺乏了解。有趣的是,最近有预测称HfO会表现出负纵向压电效应,这使其有别于传统铁电体(例如像PbTiO这样的钙钛矿氧化物),并让人联想到一些有机化合物的行为。本研究通过第一性原理计算以及使用压电力显微镜对HfO薄膜进行实验研究,证实了这种行为。此外,模拟结果表明活性氧原子的化学配位是负纵向压电效应的成因。基于这些见解,可以预测,通过控制此类活性氧的环境(例如通过外延应变),有可能改变材料压电响应的符号。