Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700, Russia.
Department of Physics and Astronomy, University of Nebraska , Lincoln, Nebraska 68588-0299, United States.
ACS Appl Mater Interfaces. 2016 Mar 23;8(11):7232-7. doi: 10.1021/acsami.5b11653. Epub 2016 Mar 14.
Because of their immense scalability and manufacturability potential, the HfO2-based ferroelectric films attract significant attention as strong candidates for application in ferroelectric memories and related electronic devices. Here, we report the ferroelectric behavior of ultrathin Hf0.5Zr0.5O2 films, with the thickness of just 2.5 nm, which makes them suitable for use in ferroelectric tunnel junctions, thereby further expanding the area of their practical application. Transmission electron microscopy and electron diffraction analysis of the films grown on highly doped Si substrates confirms formation of the fully crystalline non-centrosymmetric orthorhombic phase responsible for ferroelectricity in Hf0.5Zr0.5O2. Piezoresponse force microscopy and pulsed switching testing performed on the deposited top TiN electrodes provide further evidence of the ferroelectric behavior of the Hf0.5Zr0.5O2 films. The electronic band lineup at the top TiN/Hf0.5Zr0.5O2 interface and band bending at the adjacent n(+)-Si bottom layer attributed to the polarization charges in Hf0.5Zr0.5O2 have been determined using in situ X-ray photoelectron spectroscopy analysis. The obtained results represent a significant step toward the experimental implementation of Si-based ferroelectric tunnel junctions.
由于其巨大的可扩展性和制造潜力,基于 HfO2 的铁电薄膜作为铁电存储器和相关电子器件应用的候选材料引起了极大的关注。在这里,我们报告了厚度仅为 2.5nm 的超薄 Hf0.5Zr0.5O2 薄膜的铁电性能,这使它们适合用于铁电隧道结,从而进一步扩大了它们的实际应用领域。在高掺杂 Si 衬底上生长的薄膜的透射电子显微镜和电子衍射分析证实了完全晶态非中心对称正交相的形成,该相负责 Hf0.5Zr0.5O2 的铁电性。在沉积的顶部 TiN 电极上进行的压电力显微镜和脉冲开关测试进一步证明了 Hf0.5Zr0.5O2 薄膜的铁电行为。使用原位 X 射线光电子能谱分析确定了顶部 TiN/Hf0.5Zr0.5O2 界面处的能带排列和相邻 n(+)-Si 底层的能带弯曲,这归因于 Hf0.5Zr0.5O2 中的极化电荷。所获得的结果代表了向 Si 基铁电隧道结的实验实现迈出的重要一步。