Suppr超能文献

二项数据的Meta分析和Meta回归方法:概念及使用Stata命令metapreg的教程

Methods for meta-analysis and meta-regression of binomial data: concepts and tutorial with Stata command metapreg.

作者信息

Nyaga Victoria Nyawira, Arbyn Marc

机构信息

Unit of Cancer Epidemiology, Sciensano, Brussels, Belgium.

出版信息

Arch Public Health. 2024 Jan 29;82(1):14. doi: 10.1186/s13690-023-01215-y.

Abstract

BACKGROUND

Despite the widespread interest in meta-analysis of proportions, its rationale, certain theoretical and methodological concepts are poorly understood. The generalized linear models framework is well-established and provides a natural and optimal model for meta-analysis, network meta-analysis, and meta-regression of proportions. Nonetheless, generic methods for meta-analysis of proportions based on the approximation to the normal distribution continue to dominate.

METHODS

We developed metapreg, a tool with advanced statistical procedures to perform a meta-analysis, network meta-analysis, and meta-regression of binomial proportions in Stata using binomial, logistic and logistic-normal models. First, we explain the rationale and concepts essential in understanding statistical methods for meta-analysis of binomial proportions and describe the models implemented in metapreg. We then describe and demonstrate the models in metapreg using data from seven published meta-analyses. We also conducted a simulation study to compare the performance of metapreg estimators with the existing estimators of the population-averaged proportion in metaprop and metan under a broad range of conditions including, high over-dispersion and small meta-analysis.

CONCLUSION

metapreg is a flexible, robust and user-friendly tool employing a rigorous approach to evidence synthesis of binomial data that makes the most efficient use of all available data and does not require ad-hoc continuity correction or data imputation. We expect its use to yield higher-quality meta-analysis of binomial proportions.

摘要

背景

尽管对比例的荟萃分析有着广泛的兴趣,但其基本原理、某些理论和方法概念仍未得到充分理解。广义线性模型框架已得到广泛认可,并为比例的荟萃分析、网络荟萃分析和荟萃回归提供了自然且最优的模型。尽管如此,基于正态分布近似的比例荟萃分析通用方法仍占据主导地位。

方法

我们开发了metapreg,这是一个具有先进统计程序的工具,可在Stata中使用二项式、逻辑和逻辑正态模型对二项式比例进行荟萃分析、网络荟萃分析和荟萃回归。首先,我们解释理解二项式比例荟萃分析统计方法所必需的基本原理和概念,并描述metapreg中实现的模型。然后,我们使用来自七项已发表荟萃分析的数据描述并演示metapreg中的模型。我们还进行了一项模拟研究,以比较metapreg估计量与metaprop和metan中总体平均比例的现有估计量在包括高过度离散和小型荟萃分析在内的广泛条件下的性能。

结论

metapreg是一个灵活、稳健且用户友好的工具,采用严格的方法对二项式数据进行证据综合,能最有效地利用所有可用数据,且不需要特殊的连续性校正或数据插补。我们预计其使用将产生更高质量的二项式比例荟萃分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d0b/10823729/31c3edb0f2f0/13690_2023_1215_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验