Suppr超能文献

固定效应还是随机效应?关于分组变量中少量水平的混合效应模型的可靠性

Fixed or random? On the reliability of mixed-effects models for a small number of levels in grouping variables.

作者信息

Oberpriller Johannes, de Souza Leite Melina, Pichler Maximilian

机构信息

Theoretical Ecology University of Regensburg Regensburg Germany.

Department of Ecology University of São Paulo São Paulo Brazil.

出版信息

Ecol Evol. 2022 Jul 24;12(7):e9062. doi: 10.1002/ece3.9062. eCollection 2022 Jul.

Abstract

Biological data are often intrinsically hierarchical (e.g., species from different genera, plants within different mountain regions), which made mixed-effects models a common analysis tool in ecology and evolution because they can account for the non-independence. Many questions around their practical applications are solved but one is still debated: Should we treat a grouping variable with a low number of levels as a random or fixed effect? In such situations, the variance estimate of the random effect can be imprecise, but it is unknown if this affects statistical power and type I error rates of the fixed effects of interest. Here, we analyzed the consequences of treating a grouping variable with 2-8 levels as fixed or random effect in correctly specified and alternative models (under- or overparametrized models). We calculated type I error rates and statistical power for all-model specifications and quantified the influences of study design on these quantities. We found no influence of model choice on type I error rate and power on the population-level effect (slope) for random intercept-only models. However, with varying intercepts and slopes in the data-generating process, using a random slope and intercept model, and switching to a fixed-effects model, in case of a singular fit, avoids overconfidence in the results. Additionally, the number and difference between levels strongly influences power and type I error. We conclude that inferring the correct random-effect structure is of great importance to obtain correct type I error rates. We encourage to start with a mixed-effects model independent of the number of levels in the grouping variable and switch to a fixed-effects model only in case of a singular fit. With these recommendations, we allow for more informative choices about study design and data analysis and make ecological inference with mixed-effects models more robust for small number of levels.

摘要

生物学数据通常具有内在的层次结构(例如,来自不同属的物种,不同山区内的植物),这使得混合效应模型成为生态学和进化研究中常用的分析工具,因为它们可以考虑非独立性。围绕其实际应用的许多问题已经得到解决,但仍有一个问题存在争议:我们是否应将水平数较少的分组变量视为随机效应或固定效应?在这种情况下,随机效应的方差估计可能不准确,但尚不清楚这是否会影响感兴趣的固定效应的统计功效和I型错误率。在这里,我们分析了在正确设定的模型和替代模型(参数不足或参数过多的模型)中将具有2至8个水平的分组变量视为固定效应或随机效应的后果。我们计算了所有模型设定的I型错误率和统计功效,并量化了研究设计对这些量的影响。我们发现,对于仅具有随机截距的模型,模型选择对总体水平效应(斜率)的I型错误率和功效没有影响。然而,在数据生成过程中存在变化的截距和斜率时,使用随机斜率和截距模型,并在拟合出现奇异性时切换到固定效应模型,可以避免对结果过度自信。此外,水平数及其差异对功效和I型错误有很大影响。我们得出结论,推断正确的随机效应结构对于获得正确的I型错误率非常重要。我们鼓励从一个与分组变量的水平数无关的混合效应模型开始,仅在拟合出现奇异性时才切换到固定效应模型。通过这些建议,我们可以在研究设计和数据分析方面做出更具信息性的选择,并使使用混合效应模型进行生态学推断在水平数较少时更稳健。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7dcf/9309037/959d19077d1d/ECE3-12-e9062-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验