Cheng Zhenjie, Dong Qingyu, Pu Guiqiang, Song Junnan, Zhong Wenwu, Wang Jiacheng
Institute of Electrochemistry, School of Materials Science and Engineering, Taizhou University, Taizhou, 318000, P. R. China.
i-Lab, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, P. R. China.
Small. 2024 Jul;20(28):e2400389. doi: 10.1002/smll.202400389. Epub 2024 Jan 29.
Rechargeable Mn-metal batteries (MMBs) can attract considerable attention because Mn has the intrinsic merits including high energy density (976 mAh g), high air stability, and low toxicity. However, the application of Mn in rechargeable batteries is limited by the lack of proper cathodes for reversible Mn intercalation/de-intercalation, thus leading to low working voltage (<1.8 V) and poor cycling stability (≤200 cycles). Herein, a high-voltage and durable MMB with graphite as the cathode is successfully constructed using a LiPF-Mn(TFSI) hybrid electrolyte, which shows a high discharge voltage of 2.34 V and long-term stability of up to 1000 cycles. Mn(TFSI) can reduce the plating/stripping overpotential of Mn ions, while LiPF can efficiently improve the conductivity of the electrolyte. Electrochemical in-situ characterization implies the dual-anions intercalation/de-intercalation at the cathode and Mn plating/stripping reaction at the anode. Theoretical calculations unveil the top site of graphite is the energetically favorable for anions intercalation and TFSI shows the low migration barrier. This work paves an avenue for designing high-performance rechargeable MMBs towards electricity storage.
可充电锰金属电池(MMBs)因其具有包括高能量密度(976 mAh g)、高空气稳定性和低毒性在内的固有优点而备受关注。然而,锰在可充电电池中的应用受到缺乏用于可逆锰嵌入/脱嵌的合适阴极的限制,从而导致工作电压低(<1.8 V)和循环稳定性差(≤200次循环)。在此,使用LiPF-Mn(TFSI)混合电解质成功构建了一种以石墨为阴极的高电压耐用MMB,其显示出2.34 V的高放电电压和高达1000次循环的长期稳定性。Mn(TFSI)可以降低锰离子的电镀/剥离过电位,而LiPF可以有效提高电解质的导电性。电化学原位表征表明在阴极发生双阴离子嵌入/脱嵌,在阳极发生锰电镀/剥离反应。理论计算表明石墨的顶部位置在能量上有利于阴离子嵌入,并且TFSI显示出低迁移势垒。这项工作为设计用于储能的高性能可充电MMB开辟了一条道路。