Suppr超能文献

菱方晶系六氰合铁酸锌作为水系锰离子电池的高压正极材料

Rhombohedral Zinc Hexacyanoferrate as a High-Voltage Cathode Material for Aqueous Mn-ion Batteries.

作者信息

Pyun Jangwook, Lee Hyungjin, Lee Hyeonjun, Lee Sangki, Baek Seunghyeop, Hong Seung-Tae, Kim Hyung Do, Chae Munseok S

机构信息

Department of Nanotechnology Engineering, Pukyong National University, Busan, 48547, Republic of Korea.

Department of Energy Science and Engineering, DGIST, Daegu, 42988, Republic of Korea.

出版信息

Small. 2025 Jul;21(29):e2500483. doi: 10.1002/smll.202500483. Epub 2025 May 23.

Abstract

Aqueous metal batteries have emerged as a promising alternative to lithium-ion batteries, offering enhanced safety through the use of aqueous electrolytes. Manganese-ion battery systems remain underexplored despite the low manganese redox potential of -1.19 V (vs the standard hydrogen electrode) as well as high operating voltage and capacity. In this study, a rhombohedral zinc Prussian blue analog (ZnHCF) is investigated for the first time as a cathode material for manganese-ion batteries, demonstrating the highest operating voltage reported in the field (0.55 V vs Ag/AgCl or 1.94 V vs Mn/Mn⁺). ZnHCF exhibits a discharge capacity of 79.2 mAh g at 0.2 A g with excellent stability, retaining its original performance after 4000 cycles. By performing a comprehensive electrochemical characterization, advanced structural analysis, spectroscopic studies, and diffusion pathway and energy barrier calculations, the charge storage mechanism and structural behavior of ZnHCF are elucidated. This study underlines the application potential of ZnHCF as a high-performing cathode material for manganese-ion batteries and helps achieve a better understanding of Mn electrochemistry, offering valuable insights for advancing aqueous battery systems toward efficient and sustainable energy storage.

摘要

水系金属电池已成为锂离子电池的一种有前景的替代方案,通过使用水系电解质提高了安全性。尽管锰的氧化还原电位为-1.19 V(相对于标准氢电极),且具有高工作电压和容量,但锰离子电池系统仍未得到充分探索。在本研究中,首次研究了菱面体锌普鲁士蓝类似物(ZnHCF)作为锰离子电池的正极材料,其展现出该领域报道的最高工作电压(相对于Ag/AgCl为0.55 V,相对于Mn/Mn⁺为1.94 V)。ZnHCF在0.2 A g下的放电容量为79.2 mAh g,具有出色的稳定性,在4000次循环后仍保持其原始性能。通过进行全面的电化学表征、先进的结构分析、光谱研究以及扩散途径和能垒计算,阐明了ZnHCF的电荷存储机制和结构行为。本研究强调了ZnHCF作为锰离子电池高性能正极材料的应用潜力,并有助于更好地理解锰电化学,为推动水系电池系统朝着高效和可持续储能方向发展提供了有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eccb/12288824/9953206c88ac/SMLL-21-2500483-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验