Chen Bojian, Zhang Weihao, Wu Wenbin, Li Yiran, Chen Zhuolei, Li Chenglong
State Grid Fujian Electric Power Research Institute, Fuzhou, China.
State Grid Fujian Electric Power Co., Ltd., Fuzhou, China.
Front Neurorobot. 2024 Jan 15;17:1331427. doi: 10.3389/fnbot.2023.1331427. eCollection 2023.
Insulators play a pivotal role in the reliability of power distribution networks, necessitating precise defect detection. However, compared with aerial insulator images of transmission network, insulator images of power distribution network contain more complex backgrounds and subtle insulator defects, it leads to high false detection rates and omission rates in current mainstream detection algorithms. In response, this study presents ID-YOLOv7, a tailored convolutional neural network. First, we design a novel Edge Detailed Shape Data Augmentation (EDSDA) method to enhance the model's sensitivity to insulator's edge shapes. Meanwhile, a Cross-Channel and Spatial Multi-Scale Attention (CCSMA) module is proposed, which can interactively model across different channels and spatial domains, to augment the network's attention to high-level insulator defect features. Second, we design a Re-BiC module to fuse multi-scale contextual features and reconstruct the Neck component, alleviating the issue of critical feature loss during inter-feature layer interaction in traditional FPN structures. Finally, we utilize the MPDIoU function to calculate the model's localization loss, effectively reducing redundant computational costs. We perform comprehensive experiments using the Su22kV_broken and PASCAL VOC 2007 datasets to validate our algorithm's effectiveness. On the Su22kV_broken dataset, our approach attains an 85.7% mAP on a single NVIDIA RTX 2080ti graphics card, marking a 7.2% increase over the original YOLOv7. On the PASCAL VOC 2007 dataset, we achieve an impressive 90.3% mAP at a processing speed of 53 FPS, showing a 2.9% improvement compared to the original YOLOv7.
绝缘子在配电网可靠性中起着关键作用,因此需要进行精确的缺陷检测。然而,与输电网络的架空绝缘子图像相比,配电网的绝缘子图像包含更复杂的背景和更细微的绝缘子缺陷,这导致当前主流检测算法中的误检率和漏检率较高。针对这一问题,本研究提出了ID-YOLOv7,一种定制的卷积神经网络。首先,我们设计了一种新颖的边缘细节形状数据增强(EDSDA)方法,以提高模型对绝缘子边缘形状的敏感度。同时,提出了一种跨通道和空间多尺度注意力(CCSMA)模块,该模块可以在不同通道和空间域之间进行交互建模,以增强网络对高级绝缘子缺陷特征的注意力。其次,我们设计了一个Re-BiC模块来融合多尺度上下文特征并重建颈部组件,缓解传统FPN结构中特征层间交互时关键特征丢失的问题。最后,我们利用MPDIoU函数计算模型的定位损失,有效降低冗余计算成本。我们使用Su22kV_broken和PASCAL VOC 2007数据集进行了全面实验,以验证我们算法的有效性。在Su22kV_broken数据集上,我们的方法在单个NVIDIA RTX 2080ti显卡上达到了85.7%的平均精度均值(mAP),比原始的YOLOv7提高了7.2%。在PASCAL VOC 2007数据集上,我们以53帧每秒的处理速度实现了令人印象深刻的90.3%的mAP,与原始的YOLOv7相比提高了2.9%。