Department of Medical Genetics, Angers University Hospital, Angers, France; Mitovasc Unit, UMR CNRS 6015 INSERM 1083, University of Angers, Angers, France.
INSERM, Univ Brest, EFS, UMR 1078, GGB, Brest, France.
Genet Med. 2024 May;26(5):101087. doi: 10.1016/j.gim.2024.101087. Epub 2024 Jan 27.
Interneuronopathies are a group of neurodevelopmental disorders characterized by deficient migration and differentiation of gamma-aminobutyric acidergic interneurons resulting in a broad clinical spectrum, including autism spectrum disorders, early-onset epileptic encephalopathy, intellectual disability, and schizophrenic disorders. SP9 is a transcription factor belonging to the Krüppel-like factor and specificity protein family, the members of which harbor highly conserved DNA-binding domains. SP9 plays a central role in interneuron development and tangential migration, but it has not yet been implicated in a human neurodevelopmental disorder.
Cases with SP9 variants were collected through international data-sharing networks. To address the specific impact of SP9 variants, in silico and in vitro assays were carried out.
De novo heterozygous variants in SP9 cause a novel form of interneuronopathy. SP9 missense variants affecting the glutamate 378 amino acid result in severe epileptic encephalopathy because of hypomorphic and neomorphic DNA-binding effects, whereas SP9 loss-of-function variants result in a milder phenotype with epilepsy, developmental delay, and autism spectrum disorder.
De novo heterozygous SP9 variants are responsible for a neurodevelopmental disease. Interestingly, variants located in conserved DNA-binding domains of KLF/SP family transcription factors may lead to neomorphic DNA-binding functions resulting in a combination of loss- and gain-of-function effects.
中间神经元神经病变是一组神经发育障碍,其特征是γ-氨基丁酸能中间神经元的迁移和分化缺陷,导致广泛的临床谱系,包括自闭症谱系障碍、早发性癫痫性脑病、智力障碍和精神分裂症。SP9 是一种转录因子,属于 Krüppel 样因子和特异性蛋白家族,其成员具有高度保守的 DNA 结合域。SP9 在中间神经元发育和切线迁移中发挥核心作用,但尚未涉及人类神经发育障碍。
通过国际数据共享网络收集具有 SP9 变异的病例。为了研究 SP9 变异的具体影响,进行了计算机模拟和体外检测。
SP9 中的从头杂合变异导致一种新的中间神经元神经病变形式。影响谷氨酸 378 个氨基酸的 SP9 错义变异由于低功能和新功能的 DNA 结合效应导致严重的癫痫性脑病,而 SP9 功能丧失变异则导致更温和的表型,伴有癫痫、发育迟缓和自闭症谱系障碍。
从头杂合 SP9 变异是神经发育疾病的原因。有趣的是,位于 KLF/SP 家族转录因子保守 DNA 结合域的变异可能导致新功能的 DNA 结合功能,从而导致失活和激活功能的组合效应。