Department of Orthopaedics and Traumatology, Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China.
BMC Med Inform Decis Mak. 2024 Jan 30;24(1):26. doi: 10.1186/s12911-024-02417-2.
The rate of geriatric hip fracture in Hong Kong is increasing steadily and associated mortality in fragility fracture is high. Moreover, fragility fracture patients increase the pressure on hospital bed demand. Hence, this study aims to develop a predictive model on the length of hospital stay (LOS) of geriatric fragility fracture patients using machine learning (ML) techniques.
In this study, we use the basic information, such as gender, age, residence type, etc., and medical parameters of patients, such as the modified functional ambulation classification score (MFAC), elderly mobility scale (EMS), modified Barthel index (MBI) etc, to predict whether the length of stay would exceed 21 days or not.
Our results are promising despite the relatively small sample size of 8000 data. We develop various models with three approaches, namely (1) regularizing gradient boosting frameworks, (2) custom-built artificial neural network and (3) Google's Wide & Deep Learning technique. Our best results resulted from our Wide & Deep model with an accuracy of 0.79, with a precision of 0.73, with an area under the receiver operating characteristic curve (AUC-ROC) of 0.84. Feature importance analysis indicates (1) the type of hospital the patient is admitted to, (2) the mental state of the patient and (3) the length of stay at the acute hospital all have a relatively strong impact on the length of stay at palliative care.
Applying ML techniques to improve the quality and efficiency in the healthcare sector is becoming popular in Hong Kong and around the globe, but there has not yet been research related to fragility fracture. The integration of machine learning may be useful for health-care professionals to better identify fragility fracture patients at risk of prolonged hospital stays. These findings underline the usefulness of machine learning techniques in optimizing resource allocation by identifying high risk individuals and providing appropriate management to improve treatment outcome.
香港的老年髋部骨折发病率稳步上升,脆性骨折相关死亡率较高。此外,脆性骨折患者增加了对医院床位需求的压力。因此,本研究旨在使用机器学习(ML)技术为老年脆性骨折患者建立预测住院时间(LOS)的预测模型。
在这项研究中,我们使用了基本信息,如性别、年龄、居住类型等,以及患者的医疗参数,如改良功能活动分类评分(MFAC)、老年人活动量表(EMS)、改良巴氏指数(MBI)等,来预测住院时间是否会超过 21 天。
尽管数据量相对较小(8000 例),但我们的结果仍很有希望。我们使用三种方法开发了各种模型,分别是(1)正则化梯度提升框架,(2)定制的人工神经网络和(3)谷歌的宽深学习技术。我们最好的结果来自我们的宽深模型,其准确率为 0.79,精确度为 0.73,接收者操作特征曲线下的面积(AUC-ROC)为 0.84。特征重要性分析表明,(1)患者入院的医院类型,(2)患者的精神状态和(3)急性医院的住院时间长短都对姑息治疗的住院时间有较强的影响。
在香港乃至全球,应用机器学习技术提高医疗保健质量和效率正变得越来越流行,但尚未有关于脆性骨折的相关研究。机器学习的整合可能有助于医疗保健专业人员更好地识别有延长住院时间风险的脆性骨折患者。这些发现强调了机器学习技术在通过识别高危个体并提供适当的管理来优化资源分配,从而改善治疗效果方面的有用性。