Suppr超能文献

基于 XGBoost 算法预测中国缺血性脑卒中患者住院时间的研究。

A study on predicting the length of hospital stay for Chinese patients with ischemic stroke based on the XGBoost algorithm.

机构信息

Refined Management Office, Cangzhou Central Hospital, Cangzhou, China.

National Population Heath Data Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

出版信息

BMC Med Inform Decis Mak. 2023 Mar 22;23(1):49. doi: 10.1186/s12911-023-02140-4.

Abstract

BACKGROUND

The incidence of stroke is a challenge in China, as stroke imposes a heavy burden on families, national health services, social services, and the economy. The length of hospital stay (LOS) is an essential indicator of utilization of medical services and is usually used to assess the efficiency of hospital management and patient quality of care. This study established a prediction model based on a machine learning algorithm to predict ischemic stroke patients' LOS.

METHODS

A total of 18,195 ischemic stroke patients' electronic medical records and 28 attributes were extracted from electronic medical records in a large comprehensive hospital in China. The prediction of LOS was regarded as a multi classification problem, and LOS was divided into three categories: 1-7 days, 8-14 days and more than 14 days. After preprocessing the data and feature selection, the XGBoost algorithm was used to build a machine learning model. Ten fold cross-validation was used for model validation. The accuracy (ACC), recall rate (RE) and F1 measure were used to evaluate the performance of the prediction model of LOS of ischemic stroke patients. Finally, the XGBoost algorithm was used to identify and remove irrelevant features by ranking all attributes based on feature importance.

RESULTS

Compared with the naive Bayesian algorithm, logistic region algorithm, decision tree classifier algorithm and ADaBoost classifier algorithm, the XGBoot algorithm has higher ACC, RE and F1 measure. The average ACC, RE and F1 measure were 0.89, 0.89 and 0.89 under the 10-fold cross-validation. According to the analysis of the importance of features, the LOS of ischemic stroke patients was affected by demographic characteristics, past medical history, admission examination features, and operation characteristics. Finally, the features in terms of hemiplegia aphasia, MRS, NIHSS, TIA, Operation or not, coma index etc. were found to be the top features in importance in predicting the LOS of ischemic stroke patients.

CONCLUSIONS

The XGBoost algorithm was an appropriate machine learning method for predicting the LOS of patients with ischemic stroke. Based on the prediction model, an intelligent medical management prediction system could be developed to predict the LOS based on ischemic stroke patients' electronic medical records.

摘要

背景

中国的中风发病率是一个挑战,因为中风给家庭、国家卫生服务、社会服务和经济带来了沉重的负担。住院时间(LOS)是医疗服务利用的一个重要指标,通常用于评估医院管理效率和患者护理质量。本研究建立了一个基于机器学习算法的预测模型,以预测缺血性中风患者的 LOS。

方法

从中国一家大型综合医院的电子病历中提取了 18195 例缺血性中风患者的电子病历和 28 个属性。将 LOS 的预测视为多分类问题,并将 LOS 分为三类:1-7 天、8-14 天和超过 14 天。在对数据和特征选择进行预处理后,使用 XGBoost 算法构建机器学习模型。使用十折交叉验证进行模型验证。使用准确性(ACC)、召回率(RE)和 F1 度量来评估缺血性中风患者 LOS 预测模型的性能。最后,使用 XGBoost 算法根据特征重要性对所有属性进行排名,以识别和去除不相关的特征。

结果

与朴素贝叶斯算法、逻辑区域算法、决策树分类器算法和 ADaBoost 分类器算法相比,XGBoot 算法具有更高的 ACC、RE 和 F1 度量。在 10 折交叉验证下,平均 ACC、RE 和 F1 度量分别为 0.89、0.89 和 0.89。根据特征重要性分析,缺血性中风患者的 LOS 受到人口统计学特征、既往病史、入院检查特征和手术特征的影响。最后,发现偏瘫失语症、MRS、NIHSS、TIA、手术与否、昏迷指数等特征在预测缺血性中风患者 LOS 方面具有重要意义。

结论

XGBoost 算法是预测缺血性中风患者 LOS 的一种合适的机器学习方法。基于预测模型,可以开发智能医疗管理预测系统,根据缺血性中风患者的电子病历预测 LOS。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bdf9/10031936/f31e883133ab/12911_2023_2140_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验