Henao Juan David Zorrilla, Segura Alejandro, Tenorio Alejandro, Diaz Harold José, Paz Alejandro
School of Electrical and Electronic Engineering (IEEE), Faculty of Engineering, Universidad del Valle.
Faculty of Engineering, Santiago de Cali University.
Data Brief. 2023 Dec 20;52:109992. doi: 10.1016/j.dib.2023.109992. eCollection 2024 Feb.
This article presents the data collection process for the classification of partial discharges in electrical generators using PNG format images. The data were collected through field measurements on over 40 generators in various locations in Colombia, in addition to utilizing a partial discharge simulator provided by Omicron Energy. Throughout the collection process, special attention was given to the accuracy and coherence of the images, avoiding deformations and distortions that could impact the nature of partial discharges. Emphasis was placed on achieving high resolution in phase-resolved patterns (PRPD) to effectively correlate them with the adjacent physical phenomenon. The analysis focused on classifying the images according to the type of partial discharge, identifying them as internal, surface, or corona discharges. The obtained pulse patterns are represented in RGB color, which aids in assessing the repeatability of pulses across their distribution. These data hold potential for the development of pattern classification software for generator monitoring systems. They enable the training and validation of classification algorithms, simplifying the automated detection and analysis of partial discharges in electrical generators. Their applicability extends beyond the electrical industry and can be valuable in other fields requiring complex signal and pattern analysis. The article highlights the rigorous data collection process and precise analysis conducted to obtain a valuable set of PNG format images for partial discharge classification. These data have significant potential in advancing pattern classification software, driving progress in the monitoring and analysis of electrical generators.
本文介绍了使用PNG格式图像对发电机局部放电进行分类的数据收集过程。除了使用由Omicron Energy提供的局部放电模拟器外,这些数据还通过对哥伦比亚各地40多台发电机进行现场测量收集而来。在整个收集过程中,特别关注图像的准确性和连贯性,避免可能影响局部放电性质的变形和失真。重点在于在相分辨模式(PRPD)中实现高分辨率,以便有效地将它们与相邻的物理现象相关联。分析重点是根据局部放电的类型对图像进行分类,将其识别为内部、表面或电晕放电。所获得的脉冲模式以RGB颜色表示,这有助于评估脉冲在其分布上的可重复性。这些数据对于发电机监测系统的模式分类软件的开发具有潜力。它们能够用于训练和验证分类算法,简化发电机局部放电的自动检测和分析。其适用性不仅限于电气行业,在其他需要复杂信号和模式分析的领域也可能具有价值。本文强调了为获得用于局部放电分类的有价值的PNG格式图像集而进行的严格数据收集过程和精确分析。这些数据在推进模式分类软件、推动发电机监测和分析方面具有巨大潜力。