Suppr超能文献

将细胞色素P450单加氧酶改造为过氧化物酶的新兴策略。

Emerging Strategies for Modifying Cytochrome P450 Monooxygenases into Peroxizymes.

作者信息

Fan Shengxian, Cong Zhiqi

机构信息

CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.

University of Chinese Academy of Sciences, Beijing 100049, China.

出版信息

Acc Chem Res. 2024 Jan 31. doi: 10.1021/acs.accounts.3c00746.

Abstract

ConspectusCytochrome P450 monooxygenase is a versatile oxidizing enzyme with great potential in synthetic chemistry and biology. However, the dependence of its catalytic function on the nicotinamide cofactor NAD(P)H and redox partner proteins limits the practical catalytic application of P450 . An alternative to expensive cofactors is low-cost HO, which can be used directly to exploit the catalytic potential of P450s. However, the peroxide shunt pathway is generally inefficient at driving P450 catalysis compared to normal NAD(P)H-dependent activity. Over the last few decades, the scientific community has made continuous efforts to use directed evolution or site-directed mutagenesis to modify P450 monooxygenases into their peroxizyme modes─peroxygenase and peroxidase. Despite significant progress, obtaining efficient P450 peroxizymes remains a huge challenge. Here, we summarize our efforts to modulate peroxizyme activity in P450 monooxygenases and exploit their catalytic applications in challenging selective C-H oxidation, oxygenation, and oxyfunctionalization over the past seven years. We first developed a dual-functional small molecule (DFSM) strategy for transforming P450BM3 monooxygenase into peroxygenase. In this strategy, the typical DFSM, such as -(ω-imidazolyl)-hexanoyl-l-phenylalanine (Im-C6-Phe), binds to the P450BM3 protein with an anchoring group at one end and plays a general acid-base catalytic role in the activation of HO with an imidazolyl group at the other end. Compared with the O-O homolysis mechanism in the absence of DFSM, the addition of DFSM efficiently enables the heterolytic O-O cleavage of the adduct Fe-O-OH, thus being favored for the formation of active species compound I, which has been demonstrated by combining crystallographic and theoretical calculations. Furthermore, protein engineering showed the unique catalytic performance of DFSM-facilitated P450 peroxygenase for the highly difficult selective oxidation of C-H bonds. This catalytic performance was demonstrated during the chemoselective hydroxylation of gaseous alkanes, regioselective -demethylation of aryl ethers, highly ()-enantioselective epoxidation of styrene, and regio- and enantiomerically diverse hydroxylation of alkylbenzenes. Second, we demonstrated that DFSM-facilitated P450BM3 peroxygenase could be effectively switched to an efficient peroxidase mode through mechanism-guided protein engineering of redox-sensitive residues. Utilizing the peroxidase function of P450 enabled the direct nitration of unsaturated hydrocarbons including phenols, aromatic amines, and styrene derivatives, which was not only the P450-catalyzed direct nitration of phenols and aromatic amines for the first time but also the first example of the direct biological nitration of olefins. Finally, we report an HO tunnel engineering strategy to enable peroxygenase activity in several different P450 monooxygenases for the first time, providing a general approach for accessing engineered P450 peroxygenases. In this Account, we highlight the emerging strategies we have developed for producing practical P450 peroxizyme biocatalysts. Although the DFSM strategy is primarily applied to P450BM3 to date, both strategies of redox-sensitive residue engineering and HO tunnel engineering show great potential to extend to other P450s. These strategies have expanded the scope of applications of P450 chemistry and catalysis. Additionally, they provide a unique solution to the challenging selective oxidation of inert C-H bonds in synthetic chemistry.

摘要

综述

细胞色素P450单加氧酶是一种多功能氧化酶,在合成化学和生物学领域具有巨大潜力。然而,其催化功能对烟酰胺辅因子NAD(P)H和氧化还原伴侣蛋白的依赖性限制了P450的实际催化应用。廉价的H₂O₂可替代昂贵的辅因子,直接用于开发P450的催化潜力。然而,与正常的NAD(P)H依赖性活性相比,过氧化物分流途径在驱动P450催化方面通常效率较低。在过去几十年中,科学界不断努力通过定向进化或定点诱变将P450单加氧酶转变为过氧化物酶模式——过氧合酶和过氧化物酶。尽管取得了重大进展,但获得高效的P450过氧化物酶仍然是一个巨大的挑战。在此,我们总结了过去七年中我们在调节P450单加氧酶中的过氧化物酶活性以及在具有挑战性的选择性C-H氧化、氧合和氧官能化中开发其催化应用方面所做的努力。我们首先开发了一种双功能小分子(DFSM)策略,用于将P450BM3单加氧酶转化为过氧合酶。在该策略中,典型的DFSM,如ω-(咪唑基)-己酰基-L-苯丙氨酸(Im-C₆-Phe),一端通过锚定基团与P450BM3蛋白结合,另一端通过咪唑基在H₂O₂的活化中发挥一般酸碱催化作用。与不存在DFSM时的O-O均裂机制相比,添加DFSM有效地实现了加合物Fe-O-OH的异裂O-O裂解,因此有利于活性物种化合物I的形成,这已通过晶体学和理论计算得到证实。此外,蛋白质工程显示了DFSM促进的P450过氧合酶在极具挑战性的C-H键选择性氧化中的独特催化性能。这种催化性能在气态烷烃的化学选择性羟基化、芳基醚的区域选择性脱甲基、苯乙烯的高度(对映体)选择性环氧化以及烷基苯的区域和对映体多样化羟基化过程中得到了证明。其次,我们证明了通过对氧化还原敏感残基进行机制引导的蛋白质工程,DFSM促进的P450BM3过氧合酶可以有效地转变为高效的过氧化物酶模式。利用P450的过氧化物酶功能实现了包括酚类、芳香胺和苯乙烯衍生物在内的不饱和烃的直接硝化,这不仅是P450催化的酚类和芳香胺直接硝化的首次报道,也是烯烃直接生物硝化的首个实例。最后,我们首次报道了一种H₂O₂隧道工程策略,可使几种不同的P450单加氧酶具有过氧合酶活性,为获得工程化的P450过氧化物酶提供了一种通用方法。在本综述中,我们重点介绍了我们为生产实用的P450过氧化物酶生物催化剂而开发的新策略。尽管DFSM策略迄今为止主要应用于P450BM3,但氧化还原敏感残基工程和H₂O₂隧道工程这两种策略都显示出扩展到其他P450的巨大潜力。这些策略扩大了P450化学和催化的应用范围。此外,它们为合成化学中惰性C-H键具有挑战性的选择性氧化提供了独特的解决方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验