Chen Jie, Yao Fuquan, Jiang Yiping, Qin Xiangquan, Xian Mo, Feng Yingang, Cong Zhiqi
Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
University of Chinese Academy of Sciences, Beijing, 100049, China.
Adv Sci (Weinh). 2025 Feb;12(6):e2412100. doi: 10.1002/advs.202412100. Epub 2024 Dec 16.
Amine oxidation is an important organic reaction for the production of high-value N-containing compounds. However, it is still challenging to control the reactivity of active N-centered radicals to selectively access N-oxidation products. Herein, this study reports the engineering of cytochrome P450BM3 into multifunctional N-oxidizing enzymes with the assistance of dual-functional small molecules (DFSM) to selectively produce N-oxygenation (i.e., p-nitrosobenzene, p-nitrobenzene, and azoxybenzene) and one-electron oxidation products (i.e., oligomeric quinones and azobenzene) from aromatic amines. The best mutant, F87A/T268V/V78T/A82T, exclusively gives p-nitrosobenzene (up to 98% selectivity), whereas the selectivity for p-nitrobenzene is >99% using the mutant F87A/T268V/A82T/I263L. Crystal structure analysis reveals that key mutations and DFSM exert synergistic effects on catalytic promiscuity by controlling the substrate orientation in active center. This study highlights the potential of DFSM-facilitated P450 peroxygenase and peroxidase for the synthesis of N-containing compounds via the controllable oxidation of aromatic amines, substantially expanding the chemical space of P450 enzymes.
胺氧化是生产高价值含氮化合物的重要有机反应。然而,控制活性氮中心自由基的反应性以选择性地获得氮氧化产物仍然具有挑战性。在此,本研究报告了在双功能小分子(DFSM)的辅助下,将细胞色素P450BM3工程改造为多功能氮氧化酶,以从芳香胺中选择性地产生氮氧化产物(即对亚硝基苯、对硝基苯和氧化偶氮苯)和单电子氧化产物(即低聚醌和偶氮苯)。最佳突变体F87A/T268V/V78T/A82T仅生成对亚硝基苯(选择性高达98%),而使用突变体F87A/T268V/A82T/I263L时,对对硝基苯的选择性>99%。晶体结构分析表明,关键突变和DFSM通过控制活性中心的底物取向对催化选择性发挥协同作用。本研究突出了DFSM促进的P450过氧酶和过氧化物酶通过芳香胺的可控氧化合成含氮化合物的潜力,极大地扩展了P450酶的化学空间。