CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.
University of Chinese Academy of Sciences, Beijing 100049, China.
Faraday Discuss. 2024 Sep 11;252(0):52-68. doi: 10.1039/d4fd00008k.
Cytochrome P450 monooxygenases (P450s) are well recognized as versatile bio-oxidation catalysts. However, the catalytic functions of P450s are highly dependent on NAD(P)H and redox partner proteins. Our group has recently reported the use of a dual-functional small molecule (DFSM) for generating peroxygenase activity of P450BM3, a long-chain fatty acid hydroxylase from . The DFSM-facilitated P450BM3 peroxygenase system exhibited excellent peroxygenation activity and regio-/enantioselectivity for various organic substrates, such as styrenes, thioanisole, small alkanes, and alkylbenzenes. Very recently, we demonstrated that the DFSM-facilitated P450BM3 peroxygenase could be switched to a peroxidase by engineering the redox-sensitive tyrosine residues in P450BM3. Given the great potential of P450 peroxidase for C-H oxyfunctionalization, we herein report scrutiny of the effect of mutating redox-sensitive residues on peroxidase activity by deeply screening all redox-sensitive residues of P450BM3, namely methionines, tryptophans, cysteines, and phenylalanines. As a result, six beneficial mutations at positions M212, F81, M112, F173, M177, and F77 were screened out from 78 constructed mutants, and significantly enhanced the peroxidase activity of P450BM3 in the presence of Im-C6-Phe, a typical DFSM molecule. Further combination of the beneficial mutations resulted in a more than 100-fold improvement in peroxidase activity compared with that of the combined parent enzyme and DFSM, comparable to or better than most natural peroxidases. In addition, mutations of redox-sensitive residues even dramatically increased, by more than 300-fold, the peroxidase activity of the starting F87A enzyme in the absence of the DFSM, despite the far lower apparent catalytic turnover number compared with the DFSM-P450 system. This study provides new insights and a potential strategy for regulating the catalytic promiscuity of P450 enzymes for multiple functional oxidations.
细胞色素 P450 单加氧酶(P450s)是公认的多功能生物氧化催化剂。然而,P450s 的催化功能高度依赖于 NAD(P)H 和氧化还原伴侣蛋白。我们小组最近报道了一种双功能小分子(DFSM)在产生 P450BM3 过氧化物酶活性方面的应用,P450BM3 是一种来自 的长链脂肪酸羟化酶。DFSM 促进的 P450BM3 过氧化物酶体系对各种有机底物(如苯乙烯、硫代茴香醚、小烷烃和烷基苯)具有优异的过氧化活性和区域/对映选择性。最近,我们通过工程化 P450BM3 中的氧化还原敏感酪氨酸残基,证明了 DFSM 促进的 P450BM3 过氧化物酶可以被切换为过氧化物酶。鉴于 P450 过氧化物酶在 C-H 氧化官能化方面的巨大潜力,我们在此报告了通过深度筛选 P450BM3 中所有氧化还原敏感残基,即蛋氨酸、色氨酸、半胱氨酸和苯丙氨酸,研究突变氧化还原敏感残基对过氧化物酶活性的影响。结果,从 78 个构建的突变体中筛选出了 6 个有利突变,分别位于 M212、F81、M112、F173、M177 和 F77 位置,在存在典型的 DFSM 分子 Im-C6-Phe 的情况下,显著提高了 P450BM3 的过氧化物酶活性。进一步结合有利突变导致过氧化物酶活性比组合亲本酶和 DFSM 提高了 100 多倍,与大多数天然过氧化物酶相当或更好。此外,尽管与 DFSM-P450 体系相比,表观催化周转率要低得多,但氧化还原敏感残基的突变甚至使起始 F87A 酶在没有 DFSM 的情况下的过氧化物酶活性提高了 300 多倍。这项研究为调节 P450 酶的催化混杂性以进行多种功能氧化提供了新的见解和潜在策略。