Suppr超能文献

估计个体的心理旋转神经相关物:一种机器学习方法。

Estimating person-specific neural correlates of mental rotation: A machine learning approach.

机构信息

Department of Behavioural and Cognitive Sciences, University of Luxembourg, Esch-sur-Alzette, Luxembourg.

Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands.

出版信息

PLoS One. 2024 Jan 31;19(1):e0289094. doi: 10.1371/journal.pone.0289094. eCollection 2024.

Abstract

Using neurophysiological measures to model how the brain performs complex cognitive tasks such as mental rotation is a promising way towards precise predictions of behavioural responses. The mental rotation task requires objects to be mentally rotated in space. It has been used to monitor progressive neurological disorders. Up until now, research on neural correlates of mental rotation have largely focused on group analyses yielding models with features common across individuals. Here, we propose an individually tailored machine learning approach to identify person-specific patterns of neural activity during mental rotation. We trained ridge regressions to predict the reaction time of correct responses in a mental rotation task using task-related, electroencephalographic (EEG) activity of the same person. When tested on independent data of the same person, the regression model predicted the reaction times significantly more accurately than when only the average reaction time was used for prediction (bootstrap mean difference of 0.02, 95% CI: 0.01-0.03, p < .001). When tested on another person's data, the predictions were significantly less accurate compared to within-person predictions. Further analyses revealed that considering person-specific reaction times and topographical activity patterns substantially improved a model's generalizability. Our results indicate that a more individualized approach towards neural correlates can improve their predictive performance of behavioural responses, particularly when combined with machine learning.

摘要

使用神经生理学测量来模拟大脑执行复杂认知任务(如心理旋转)的方式是对行为反应进行精确预测的一种很有前途的方法。心理旋转任务要求在空间中对物体进行心理旋转。它已被用于监测进行性神经疾病。到目前为止,心理旋转的神经相关研究主要集中在群体分析上,得出的模型具有个体共有的特征。在这里,我们提出了一种个性化的机器学习方法,以识别心理旋转过程中个体特定的神经活动模式。我们使用相关的、同一个人的脑电图(EEG)活动来训练脊回归模型,以预测心理旋转任务中正确反应的反应时间。当在同一个人的独立数据上进行测试时,回归模型的预测比仅使用平均反应时间进行预测更准确(bootstrap 均值差异为 0.02,95%CI:0.01-0.03,p<0.001)。当在另一个人的数据上进行测试时,与个体内预测相比,预测准确性显著降低。进一步的分析表明,考虑个体特定的反应时间和拓扑活动模式可以大大提高模型的通用性。我们的结果表明,对神经相关的更个性化的方法可以提高其对行为反应的预测性能,尤其是与机器学习相结合时。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff5d/10830051/0ab828b223f1/pone.0289094.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验