Suppr超能文献

基于特征选择和支持向量机回归的脑电图有效跨任务心理负荷识别模型研究

Towards an effective cross-task mental workload recognition model using electroencephalography based on feature selection and support vector machine regression.

作者信息

Ke Yufeng, Qi Hongzhi, Zhang Lixin, Chen Shanguang, Jiao Xuejun, Zhou Peng, Zhao Xin, Wan Baikun, Ming Dong

机构信息

Department of Biomedical Engineering, College of Precision Instrument and Optoelectronics Engineering, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, PR China; Tianjin Key Laboratory of Biomedical Detecting Techniques and Instruments, Tianjin, PR China.

Department of Biomedical Engineering, College of Precision Instrument and Optoelectronics Engineering, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, PR China; Tianjin Key Laboratory of Biomedical Detecting Techniques and Instruments, Tianjin, PR China.

出版信息

Int J Psychophysiol. 2015 Nov;98(2 Pt 1):157-66. doi: 10.1016/j.ijpsycho.2015.10.004. Epub 2015 Oct 19.

Abstract

Electroencephalographic (EEG) has been believed to be a potential psychophysiological measure of mental workload. There however remain a number of challenges in building a generalized mental workload recognition model, one of which includes the inability of an EEG-based workload classifier trained on a specific task to handle other tasks. The primary goal of the present study was to examine the possibility of addressing this challenge using feature selection and regression model. Support vector machine classifier and regression models were examined under within-task conditions (trained and tested on the same task) and cross-task conditions (trained on one task and tested on another task) for well-trained verbal and spatial n-back tasks. A specifically designed cross-task recursive feature elimination (RFE) based feature selection was used to handle the possible causes responsible for the deterioration of the performance of cross-task regression model. The within-task classification and regression performed fairly well. Cross-task classification and regression performance, however, deteriorated to unacceptable levels (around chance level). Trained and tested with the most robust feature subset selected by cross-task RFE, the performance of cross-task regression was significantly improved, and there were no significant changes in the performance of within-task regression. It can be inferred that workload-related features can be picked out from those which have been contaminated using RFE, and regression models rather than classifiers may be a wiser choice for cross-task conditions. These encouraging results suggest that the cross-task workload recognition model built in this study is much more generalizable across task when compared to the model built in traditional way.

摘要

脑电图(EEG)被认为是一种潜在的心理生理层面的心理负荷测量方法。然而,在构建一个通用的心理负荷识别模型方面仍存在许多挑战,其中之一包括基于特定任务训练的基于脑电图的负荷分类器无法处理其他任务。本研究的主要目标是探讨使用特征选择和回归模型应对这一挑战的可能性。针对训练有素的言语和空间n-back任务,在任务内条件(在同一任务上进行训练和测试)和跨任务条件(在一个任务上进行训练,在另一个任务上进行测试)下,研究了支持向量机分类器和回归模型。使用专门设计的基于跨任务递归特征消除(RFE)的特征选择来处理可能导致跨任务回归模型性能下降的原因。任务内的分类和回归表现良好。然而,跨任务分类和回归性能恶化到了不可接受的水平(接近随机水平)。使用跨任务RFE选择的最稳健特征子集进行训练和测试后,跨任务回归的性能得到了显著改善,任务内回归的性能没有显著变化。可以推断,与负荷相关的特征可以从那些已被RFE“污染”的特征中挑选出来,并且对于跨任务条件,回归模型而非分类器可能是更明智的选择。这些令人鼓舞的结果表明,与传统方式构建的模型相比,本研究构建的跨任务负荷识别模型在不同任务之间具有更强的通用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验