Department of Chemistry, Indian Institute of Space Science and Technology, Thiruvananthapuram, Kerala 695 547,India.
ACS Appl Bio Mater. 2024 Feb 19;7(2):1191-1203. doi: 10.1021/acsabm.3c01072. Epub 2024 Jan 31.
A facile and environmentally mindful approach for the synthesis of MoSe QDs was developed via the hydrothermal method from bulk MoSe. In this, the exfoliation of MoSe was enhanced with the aid of an intercalation agent (KOH), which could reduce the exfoliation time and increase the exfoliation efficiency to form MoSe QDs. We found that MoSe QDs display blue emission that is suitable for different applications. This fluorescence property of MoSe QDs was harnessed to fabricate a dual-modal sensor for the detection of both vitamin B (VB) and vitamin B (VB), employing fluorescence quenching. We performed a detailed study on the fluorescence quenching mechanism of both analytes. The predominant quenching mechanism for VB is via Förster resonance energy transfer. In contrast, the recognition of VB primarily relies on the inner filter effect. We applied an emerging and captivating approach to pattern recognition, the deep-learning method, which enables machines to "learn" patterns through training, eliminating the need for explicit programming of recognition methods. This attribute endows deep-learning with immense potential in the realm of sensing data analysis. Here, analyzing the array-based sensing data, the deep-learning technique, "convolution neural networks", has achieved 93% accuracy in determining the contribution of VB and VB.
通过水热法从块状 MoSe 合成 MoSe QDs 的简便且环保的方法。在此过程中,插层剂 (KOH) 增强了 MoSe 的剥离,这可以减少剥离时间并提高剥离效率,从而形成 MoSe QDs。我们发现 MoSe QDs 显示出适合不同应用的蓝色发射。利用 MoSe QDs 的这种荧光性质,我们构建了一种双模态传感器,用于通过荧光猝灭检测两种维生素 B(VB 和 VB)。我们对两种分析物的荧光猝灭机制进行了详细研究。VB 的主要猝灭机制是Förster 共振能量转移。相比之下,VB 的识别主要依赖于内滤效应。我们采用了一种新兴且引人入胜的模式识别方法,即深度学习方法,使机器能够通过训练“学习”模式,而无需显式编程识别方法。这一属性赋予深度学习在传感数据分析领域巨大的潜力。在这里,通过基于阵列的传感数据分析,深度学习技术“卷积神经网络”在确定 VB 和 VB 贡献方面达到了 93%的准确率。