Hossain Sk Miraz, Patnaik Pratyush, Sharma Ritika, Sarkar Suman, Chatterjee Uma
Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India.
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
ACS Appl Mater Interfaces. 2024 Feb 14;16(6):7097-7111. doi: 10.1021/acsami.3c16113. Epub 2024 Jan 31.
The incorporation of cerium-zinc bimetallic oxide (CeZnO) nanostructures in sulfonated poly(2,6-dimethyl-1,4-phenylene oxide) (SPPO) membranes holds promise in an enhanced and durable fuel cell performance. This investigation delves into the durability and efficiency of SPPO membranes intercalated with CeZnO nanostructures by varying the filler loading of 1, 2, and 3% (w/w). The successful synthesis of CeZnO nanostructures by the alkali-aided deposition method is confirmed by wide-angle X-ray diffraction spectroscopy (WAXS), Raman spectroscopy, field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) analyses. CeZnO@SPPO nanocomposite membranes are fabricated using a solution casting method. The intricate interplay of interfacial adhesion and coupling configuration between three-dimensional CeZnO and sulfonic moieties of the SPPO backbone yields an enhancement in the bound water content within the proton exchange membranes (PEMs). This constructs simultaneously an extensive hydrogen bonding network intertwined with the proton transport channels, thereby elevating the proton conductivity (). The orchestrated reversible redox cycling involving Ce/Ce enhances the quenching of aggressive radicals, aided by Zn, promoting oxygen deficiency and Ce concentration. This synergistic efficacy ultimately translates into composite PEMs characterized by a mere 4% mass loss and a nominal 6% decrease in after rigorous exposure to Fenton's solution. Remarkably, an improved power density of 403.2 mW/cm and a maximum current density of 1260.6 mA/cm were achieved with 2% loading of CeZnO (SPZ-2) at 75 °C and 100% RH. The fuel cell performance of SPZ-2 is 74% higher than its corresponding pristine SPPO membrane.
将铈锌双金属氧化物(CeZnO)纳米结构掺入磺化聚(2,6-二甲基-1,4-苯醚)(SPPO)膜中有望提高燃料电池的性能并使其更耐用。本研究通过改变1%、2%和3%(w/w)的填料负载量,深入探讨了插入CeZnO纳米结构的SPPO膜的耐久性和效率。通过广角X射线衍射光谱(WAXS)、拉曼光谱、场发射扫描电子显微镜(FE-SEM)、透射电子显微镜(TEM)和X射线光电子能谱(XPS)分析,证实了通过碱辅助沉积法成功合成了CeZnO纳米结构。采用溶液浇铸法制备了CeZnO@SPPO纳米复合膜。三维CeZnO与SPPO主链的磺酸基团之间复杂的界面粘附和耦合构型相互作用,提高了质子交换膜(PEM)中的结合水含量。这同时构建了一个与质子传输通道交织的广泛氢键网络,从而提高了质子传导率()。涉及Ce/Ce的精心编排的可逆氧化还原循环增强了活性自由基的猝灭,在Zn的辅助下,促进了氧缺陷和Ce浓度。这种协同效应最终转化为复合PEM,在严格暴露于芬顿溶液后,质量损失仅为4%, 仅名义下降6%。值得注意的是,在75°C和100%RH条件下,CeZnO负载量为2%(SPZ-2)时,功率密度提高到403.2 mW/cm,最大电流密度达到1260.6 mA/cm。SPZ-2的燃料电池性能比相应的原始SPPO膜高74%。