Suppr超能文献

富含三唑的三维金属有机框架结合固体电解质,用于在燃料电池中实现卓越的质子传导性和耐久性。

Triazole-rich 3D metal-organic framework incorporated solid electrolytes for superior proton conductivity and durability in fuel cells.

作者信息

Ray Madhuparna, Sethy Sunil K, Maiti Subrata Kumar, Ali Nasir, Bhosale Amit C, Negi Yuvraj Singh, Chattopadhyay Sujay

机构信息

Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.

Department of Hydro and Renewable Energy, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.

出版信息

Phys Chem Chem Phys. 2024 Aug 7;26(31):20971-20983. doi: 10.1039/d4cp02196g.

Abstract

Insufficient proton conductivity and oxidative stability of sulfonated hydrocarbons hinder their applicability as proton exchange membrane electrolytes in fuel cells. In this regard, fabrication of proton conducting mixed-matrix membranes (PC-MMMs) can be a superior approach to obtain desirable properties. In this work, a triazole ligand (1H-1,2,4 triazole) was coordinated to a zinc metal node to create a 3D metal-organic framework (MOF) and incorporated as an additive in a sulfonated poly(ether ether ketone) matrix at 1, 3, and 5 weight percentage to fabricate PC-MMMs by the casting process. Several characterization tools such as electrochemical impedance spectroscopy, Fourier transform infrared spectroscopy and scanning electron microscopy were used to characterise these membranes and study their potential application as electrolyte(s) in PEMFCs (proton exchange membrane fuel cells). Membranes were also tested for water uptake, ion-exchange capacity and oxidative stability in Fenton's reagent. The performance of the polymeric composite membrane containing a 3 wt% MOF was then assessed in a H/O single cell as it demonstrated the highest proton conductivity of 0.04 S cm among all the compositions and a maximum current density of 1191 mA cm. The membrane was also subjected to an OCV hold test for 12 hours to study the chemical durability over a period of time. This report establishes that the inclusion of a triazole based MOF enhances the proton conductivity, performance, and thermal and chemical durability of composite membranes which can be considered as a promising electrolyte material at intermediate temperatures after a proper optimisation of different cell parameters.

摘要

磺化烃类的质子传导率和氧化稳定性不足,阻碍了它们在燃料电池中作为质子交换膜电解质的应用。在这方面,制备质子传导混合基质膜(PC-MMMs)可能是获得理想性能的一种优越方法。在这项工作中,一种三唑配体(1H-1,2,4-三唑)与锌金属节点配位,形成三维金属有机框架(MOF),并以1%、3%和5%的重量百分比作为添加剂掺入磺化聚醚醚酮基质中,通过流延工艺制备PC-MMMs。使用了几种表征工具,如电化学阻抗谱、傅里叶变换红外光谱和扫描电子显微镜来表征这些膜,并研究它们作为质子交换膜燃料电池(PEMFCs)电解质的潜在应用。还对膜进行了水吸收、离子交换容量和在芬顿试剂中的氧化稳定性测试。然后在氢/氧单电池中评估了含有3 wt% MOF的聚合物复合膜的性能,因为它在所有组成中表现出最高的质子传导率0.04 S/cm和最大电流密度1191 mA/cm。该膜还进行了12小时的开路电压保持测试,以研究一段时间内的化学耐久性。本报告表明,加入基于三唑的MOF可提高复合膜的质子传导率、性能以及热和化学耐久性,经过对不同电池参数的适当优化后,可被视为中温下有前景的电解质材料。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验