Suppr超能文献

基于心电图和胸部 X 射线的深度学习模型对缺血性心脏病患者进行多模态风险评估。

Multimodality Risk Assessment of Patients with Ischemic Heart Disease Using Deep Learning Models Applied to Electrocardiograms and Chest X-rays.

机构信息

Department of Cardiovascular Medicine, The University of Tokyo Hospital.

出版信息

Int Heart J. 2024;65(1):29-38. doi: 10.1536/ihj.23-402.

Abstract

Comprehensive management approaches for patients with ischemic heart disease (IHD) are important aids for prognostication and treatment planning. While single-modality deep neural networks (DNNs) have shown promising performance for detecting cardiac abnormalities, the potential benefits of using DNNs for multimodality risk assessment in patients with IHD have not been reported. The purpose of this study was to investigate the effectiveness of multimodality risk assessment in patients with IHD using a DNN that utilizes 12-lead electrocardiograms (ECGs) and chest X-rays (CXRs), with the prediction of major adverse cardiovascular events (MACEs) being of particular concern.DNN models were applied to detection of left ventricular systolic dysfunction (LVSD) on ECGs and identification of cardiomegaly findings on CXRs. A total of 2107 patients who underwent elective percutaneous coronary intervention were categorized into 4 groups according to the models' outputs: Dual-modality high-risk (n = 105), ECG high-risk (n = 181), CXR high-risk (n = 392), and No-risk (n = 1,429).A total of 342 MACEs were observed. The incidence of a MACE was the highest in the Dual-modality high-risk group (P < 0.001). Multivariate Cox hazards analysis for predicting MACE revealed that the Dual-modality high-risk group had a significantly higher risk of MACE than the No-risk group (hazard ratio (HR): 2.370, P < 0.001), the ECG high-risk group (HR: 1.906, P = 0.010), and the CXR high-risk group (HR: 1.624, P = 0.018), after controlling for confounding factors.The results suggest the usefulness of multimodality risk assessment using DNN models applied to 12-lead ECG and CXR data from patients with IHD.

摘要

综合管理方法对于缺血性心脏病 (IHD) 患者非常重要,是预测和治疗计划的重要辅助手段。虽然单模态深度神经网络 (DNN) 在检测心脏异常方面表现出了良好的性能,但尚未有报道表明 DNN 用于 IHD 患者多模态风险评估的潜在益处。本研究旨在探讨使用 DNN 对 12 导联心电图 (ECG) 和胸部 X 线 (CXR) 进行多模态风险评估对 IHD 患者的有效性,尤其关注主要不良心血管事件 (MACE) 的预测。

DNN 模型应用于心电图上左心室收缩功能障碍 (LVSD) 的检测和 CXR 中心脏扩大的识别。根据模型的输出,将 2107 名接受选择性经皮冠状动脉介入治疗的患者分为 4 组:双模态高危组 (n = 105)、ECG 高危组 (n = 181)、CXR 高危组 (n = 392) 和无风险组 (n = 1429)。共观察到 342 例 MACE。双模态高危组的 MACE 发生率最高 (P < 0.001)。多变量 Cox 风险分析预测 MACE 表明,与无风险组相比,双模态高危组发生 MACE 的风险显著更高 (风险比 (HR):2.370,P < 0.001),ECG 高危组 (HR:1.906,P = 0.010) 和 CXR 高危组 (HR:1.624,P = 0.018),在控制混杂因素后。

研究结果表明,使用 DNN 模型对 IHD 患者的 12 导联 ECG 和 CXR 数据进行多模态风险评估是有用的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验