Suppr超能文献

一种基于深度学习的心电图和胸部X光用于检测肺动脉高压。

A Deep-Learning-Enabled Electrocardiogram and Chest X-Ray for Detecting Pulmonary Arterial Hypertension.

作者信息

Liu Pang-Yen, Hsing Shi-Chue, Tsai Dung-Jang, Lin Chin, Lin Chin-Sheng, Wang Chih-Hung, Fang Wen-Hui

机构信息

Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center Taipei, Taipei, Taiwan R.O.C.

Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.

出版信息

J Imaging Inform Med. 2025 Apr;38(2):747-756. doi: 10.1007/s10278-024-01225-4. Epub 2024 Aug 13.

Abstract

The diagnosis and treatment of pulmonary hypertension have changed dramatically through the re-defined diagnostic criteria and advanced drug development in the past decade. The application of Artificial Intelligence for the detection of elevated pulmonary arterial pressure (ePAP) was reported recently. Artificial Intelligence (AI) has demonstrated the capability to identify ePAP and its association with hospitalization due to heart failure when analyzing chest X-rays (CXR). An AI model based on electrocardiograms (ECG) has shown promise in not only detecting ePAP but also in predicting future risks related to cardiovascular mortality. We aimed to develop an AI model integrating ECG and CXR to detect ePAP and evaluate their performance. We developed a deep-learning model (DLM) using paired ECG and CXR to detect ePAP (systolic pulmonary artery pressure > 50 mmHg in transthoracic echocardiography). This model was further validated in a community hospital. Additionally, our DLM was evaluated for its ability to predict future occurrences of left ventricular dysfunction (LVD, ejection fraction < 35%) and cardiovascular mortality. The AUCs for detecting ePAP were as follows: 0.8261 with ECG (sensitivity 76.6%, specificity 74.5%), 0.8525 with CXR (sensitivity 82.8%, specificity 72.7%), and 0.8644 with a combination of both (sensitivity 78.6%, specificity 79.2%) in the internal dataset. In the external validation dataset, the AUCs for ePAP detection were 0.8348 with ECG, 0.8605 with CXR, and 0.8734 with the combination. Furthermore, using the combination of ECGs and CXR, the negative predictive value (NPV) was 98% in the internal dataset and 98.1% in the external dataset. Patients with ePAP detected by the DLM using combination had a higher risk of new-onset LVD with a hazard ratio (HR) of 4.51 (95% CI: 3.54-5.76) in the internal dataset and cardiovascular mortality with a HR of 6.08 (95% CI: 4.66-7.95). Similar results were seen in the external validation dataset. The DLM, integrating ECG and CXR, effectively detected ePAP with a strong NPV and forecasted future risks of developing LVD and cardiovascular mortality. This model has the potential to expedite the early identification of pulmonary hypertension in patients, prompting further evaluation through echocardiography and, when necessary, right heart catheterization (RHC), potentially resulting in enhanced cardiovascular outcomes.

摘要

在过去十年中,随着诊断标准的重新定义和药物研发的进展,肺动脉高压的诊断和治疗发生了巨大变化。最近有报道称人工智能可用于检测肺动脉压升高(ePAP)。人工智能(AI)已证明在分析胸部X光片(CXR)时能够识别ePAP及其与因心力衰竭住院的关联。基于心电图(ECG)的人工智能模型不仅在检测ePAP方面显示出前景,而且在预测与心血管死亡率相关的未来风险方面也有潜力。我们旨在开发一种整合ECG和CXR的人工智能模型来检测ePAP并评估其性能。我们使用配对的ECG和CXR开发了一个深度学习模型(DLM)来检测ePAP(经胸超声心动图中收缩期肺动脉压>50 mmHg)。该模型在一家社区医院进一步得到验证。此外,我们评估了DLM预测左心室功能障碍(LVD,射血分数<35%)和心血管死亡率未来发生情况的能力。在内部数据集中,检测ePAP的曲线下面积(AUC)如下:ECG为0.8261(敏感性76.6%,特异性74.5%),CXR为0.8525(敏感性82.8%,特异性72.7%),两者结合为0.8644(敏感性78.6%,特异性79.2%)。在外部验证数据集中,检测ePAP的AUC分别为:ECG为0.8348,CXR为0.8605,两者结合为0.8734。此外,使用ECG和CXR的组合,内部数据集的阴性预测值(NPV)为98%,外部数据集为98.1%。使用组合方法的DLM检测出ePAP的患者发生新发LVD的风险更高,内部数据集中风险比(HR)为4.51(95%可信区间:3.54 - 5.76),发生心血管死亡的风险比为6.08(95%可信区间:4.66 - 7.95)。在外部验证数据集中也观察到了类似结果。整合ECG和CXR的DLM有效检测出ePAP,具有很强的NPV,并预测了发生LVD和心血管死亡的未来风险。该模型有可能加快对患者肺动脉高压的早期识别,促使通过超声心动图进行进一步评估,并在必要时进行右心导管检查(RHC),从而可能改善心血管结局。

相似文献

本文引用的文献

3
Pulmonary Arterial Hypertension.肺动脉高压
N Engl J Med. 2021 Dec 16;385(25):2361-2376. doi: 10.1056/NEJMra2000348.
9
Screening strategies for pulmonary arterial hypertension.肺动脉高压的筛查策略
Eur Heart J Suppl. 2019 Dec;21(Suppl K):K9-K20. doi: 10.1093/eurheartj/suz204. Epub 2019 Dec 17.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验