Suppr超能文献

作物产量预测文献的文献计量分析:基于以往研究结果的见解及未来研究展望

A bibliometric analysis of the literature on crop yield prediction: insights from previous findings and prospects for future research.

作者信息

Momenpour Seyed Erfan, Bazgeer Saeed, Moghbel Masoumeh

机构信息

Faculty of Geography, University of Tehran, Tehran, Iran.

出版信息

Int J Biometeorol. 2024 May;68(5):829-842. doi: 10.1007/s00484-024-02628-2. Epub 2024 Feb 1.

Abstract

This research presents a bibliometric analysis of articles predicting crop yield using machine learning methods. While several systematic review articles exist, a comprehensive bibliometric analysis illustrating the knowledge structure and research trends, along with collaboration networks among authors, institutions, and countries in this field, has not been conducted. The study focused on 826 articles published over a 32-year period (1992 to 2023) and revealed a significant increase in publications, particularly in recent years. Zhang Zhao from China authored the majority of articles, while the highest number of citations was associated with articles by Zhu Yan and Lobell. Leading countries in article publications are the USA, China, India, Germany, Australia, and Canada, showing strong interconnections in citing each other's research. The Chinese Academy of Sciences and the US Department of Agriculture are the institutions with the highest number of articles and citations in this domain. The journals Agricultural and Forest Meteorology and Remote Sensing are recognized as top ranking journals in this field (Q1). Based on co-occurrence analysis, three main thematic domains were identified: weather and crop yield prediction, plant growth simulation models, and crop yield prediction using remote sensing data. The research suggests a focus on variables such as disease, pests, insects, and soil salinity when predicting yield. Additionally, greater attention should be given to discussions on food security and crop yield, especially in developing countries.

摘要

本研究对使用机器学习方法预测作物产量的文章进行了文献计量分析。虽然已有几篇系统综述文章,但尚未进行全面的文献计量分析来阐明该领域的知识结构和研究趋势,以及作者、机构和国家之间的合作网络。该研究聚焦于32年期间(1992年至2023年)发表的826篇文章,发现出版物数量显著增加,尤其是近年来。来自中国的张钊撰写的文章数量最多,而被引用次数最多的文章是朱艳和洛贝尔所著。文章发表的主要国家有美国、中国、印度、德国、澳大利亚和加拿大,它们在相互引用研究方面表现出紧密的联系。中国科学院和美国农业部是该领域文章数量和被引用次数最多的机构。《农业与森林气象学》和《遥感》期刊被公认为该领域的顶级期刊(Q1)。基于共现分析,确定了三个主要主题领域:天气与作物产量预测、植物生长模拟模型以及利用遥感数据进行作物产量预测。研究表明,在预测产量时应关注疾病、害虫、昆虫和土壤盐分等变量。此外,应更加关注关于粮食安全和作物产量的讨论,特别是在发展中国家。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验