文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

与免疫缺陷小鼠胃肠道侵袭性感染相关的微生物组特征。

Microbiota signatures associated with invasive infection in the gastrointestinal tract of immunodeficient mice.

机构信息

National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Miaoli, Taiwan.

School of Dentistry, China Medical University, Taichung, Taiwan.

出版信息

Front Cell Infect Microbiol. 2024 Jan 17;13:1278600. doi: 10.3389/fcimb.2023.1278600. eCollection 2023.


DOI:10.3389/fcimb.2023.1278600
PMID:38298919
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10828038/
Abstract

is a commensal microorganism in the human gut but occasionally causes invasive infection (ICA), especially in immunocompromised individuals. Early initiation of antifungal therapy is associated with reduced mortality of ICA, but rapid diagnosis remains a challenge. The ICA-associated changes in the gut microbiota can be used as diagnostic and therapeutic targets but have been poorly investigated. In this study, we utilized an immunodeficient Rag2γc (-/--/-) mouse model to investigate the gut microbiota alterations caused by throughout its cycle, from its introduction into the gastrointestinal tract to invasion, in the absence of antibiotics. We observed a significant increase in the abundance of , particularly and , as well as a significant decrease in the abundance of in mice exposed to either the wild-type SC5314 strain or the filamentation-defective mutant () HLC54 strain of . However, only the SC5314-infected mice developed ICA. A linear discriminate analysis of the temporal changes in the gut bacterial composition revealed as a discriminative biomarker associated with SC5314-infected mice with ICA. Additionally, a positive correlation between the abundance and fungal load was found, and the negative correlation between the abundance and fungal load after exposure to suggested that might affect the differentiation of intestinal Th17 cells. Our findings reveal the influence of pathogenic on the gut microbiota and identify the abundance of as a microbiota signature associated with ICA in an immunodeficient mouse model.

摘要

是人体肠道中的共生微生物,但偶尔会引起侵袭性感染(ICA),特别是在免疫功能低下的个体中。早期开始抗真菌治疗与降低 ICA 的死亡率相关,但快速诊断仍然是一个挑战。ICA 相关的肠道微生物群变化可用作诊断和治疗靶点,但研究甚少。在这项研究中,我们利用免疫缺陷 Rag2γc(-/-/-)小鼠模型,在没有抗生素的情况下,研究了从肠道引入到侵袭过程中引起的肠道微生物群变化。我们观察到暴露于野生型 SC5314 菌株或丝状缺陷突变体()HLC54 菌株的小鼠中,数量显著增加,尤其是和,而数量显著减少。然而,只有 SC5314 感染的小鼠才会发展为 ICA。肠道细菌组成的时间变化的线性判别分析显示为与具有 ICA 的 SC5314 感染小鼠相关的鉴别生物标志物。此外,我们还发现数量与真菌负荷之间存在正相关,而暴露于后数量与真菌负荷之间存在负相关,这表明可能会影响肠道 Th17 细胞的分化。我们的研究结果揭示了致病性对肠道微生物群的影响,并确定了数量作为免疫缺陷小鼠模型中与 ICA 相关的微生物群特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b87/10828038/37e8160d7649/fcimb-13-1278600-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b87/10828038/607b47d17652/fcimb-13-1278600-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b87/10828038/9e9bfdaae01a/fcimb-13-1278600-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b87/10828038/e6ffc0867d52/fcimb-13-1278600-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b87/10828038/4781577555c8/fcimb-13-1278600-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b87/10828038/bac97749c62b/fcimb-13-1278600-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b87/10828038/a96d51b26a13/fcimb-13-1278600-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b87/10828038/37e8160d7649/fcimb-13-1278600-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b87/10828038/607b47d17652/fcimb-13-1278600-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b87/10828038/9e9bfdaae01a/fcimb-13-1278600-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b87/10828038/e6ffc0867d52/fcimb-13-1278600-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b87/10828038/4781577555c8/fcimb-13-1278600-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b87/10828038/bac97749c62b/fcimb-13-1278600-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b87/10828038/a96d51b26a13/fcimb-13-1278600-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b87/10828038/37e8160d7649/fcimb-13-1278600-g007.jpg

相似文献

[1]
Microbiota signatures associated with invasive infection in the gastrointestinal tract of immunodeficient mice.

Front Cell Infect Microbiol. 2023

[2]
Colonizes and Disseminates to the Gastrointestinal Tract in the Presence of the Microbiota in a Severe Combined Immunodeficient Mouse Model.

Front Microbiol. 2021-1-8

[3]
Fecal microbiota transplantation prevents Candida albicans from colonizing the gastrointestinal tract.

Microbiol Immunol. 2019-5

[4]
Synergistic Effects of Licorice Root and Walnut Leaf Extracts on Gastrointestinal Candidiasis, Inflammation and Gut Microbiota Composition in Mice.

Microbiol Spectr. 2022-4-27

[5]
Candida albicans Isolates 529L and CHN1 Exhibit Stable Colonization of the Murine Gastrointestinal Tract.

mBio. 2021-12-21

[6]
Mucosal Bacteria Modulate Candida albicans Virulence in Oropharyngeal Candidiasis.

mBio. 2021-8-31

[7]
Decreased Ecological Resistance of the Gut Microbiota in Response to Clindamycin Challenge in Mice Colonized with the Fungus Candida albicans.

mSphere. 2021-1-20

[8]
Non-lethal Candida albicans cph1/cph1 efg1/efg1 transcription factor mutant establishing restricted zone of infection in a mouse model of systemic infection.

Int J Immunopathol Pharmacol. 2006

[9]
Quantitative evaluation of tissue invasion by wild type, hyphal and SAP mutants of Candida albicans, and non-albicans Candida species in reconstituted human oral epithelium.

J Oral Pathol Med. 2006-9

[10]
Comparative Analysis of the Fitness of Candida albicans Strains During Colonization of the Mice Gastrointestinal Tract.

Methods Mol Biol. 2022

引用本文的文献

[1]
Multi-omics analysis reveals indicator features of microbe-host interactions during colonization and subsequent infection.

Front Microbiol. 2024-11-27

[2]
Gene expression profiling reveals host defense strategies for restricting invasion and gastritis to the limiting ridge of the murine stomach.

Infect Immun. 2024-12-10

[3]
Essential oils as promising treatments for treating infections: research progress, mechanisms, and clinical applications.

Front Pharmacol. 2024-5-15

[4]
Microbiome Dynamics: A Paradigm Shift in Combatting Infectious Diseases.

J Pers Med. 2024-2-18

本文引用的文献

[1]
Candida expansion in the gut of lung cancer patients associates with an ecological signature that supports growth under dysbiotic conditions.

Nat Commun. 2023-5-9

[2]
Gut microbiota-mediated nucleotide synthesis attenuates the response to neoadjuvant chemoradiotherapy in rectal cancer.

Cancer Cell. 2023-1-9

[3]
Interactions among the mycobiome, bacteriome, inflammation, and diet in people living with HIV.

Gut Microbes. 2022

[4]
Host Immunity Influences the Composition of Murine Gut Microbiota.

Front Immunol. 2022

[5]
Immune regulation by fungal strain diversity in inflammatory bowel disease.

Nature. 2022-3

[6]
Multi-omics analyses of the ulcerative colitis gut microbiome link Bacteroides vulgatus proteases with disease severity.

Nat Microbiol. 2022-2

[7]
Bacteroides vulgatus and Bacteroides dorei predict immune-related adverse events in immune checkpoint blockade treatment of metastatic melanoma.

Genome Med. 2021-10-13

[8]
Induction of IL-22-Producing CD4+ T Cells by Segmented Filamentous Bacteria Independent of Classical Th17 Cells.

Front Immunol. 2021

[9]
Discovering Potential Taxonomic Biomarkers of Type 2 Diabetes From Human Gut Microbiota Different Feature Selection Methods.

Front Microbiol. 2021-8-25

[10]
Biomarkers for the diagnosis of invasive candidiasis in immunocompetent and immunocompromised patients.

Diagn Microbiol Infect Dis. 2021-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索