Suppr超能文献

基于晶格图神经网络和有限训练数据的合金及其氢化物相图

Phase Diagrams of Alloys and Their Hydrides via On-Lattice Graph Neural Networks and Limited Training Data.

作者信息

Witman Matthew D, Bartelt Norman C, Ling Sanliang, Guan Pin-Wen, Way Lauren, Allendorf Mark D, Stavila Vitalie

机构信息

Sandia National Laboratories, Livermore, California 94551-0969, United States.

Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.

出版信息

J Phys Chem Lett. 2024 Feb 8;15(5):1500-1506. doi: 10.1021/acs.jpclett.3c03369. Epub 2024 Feb 1.

Abstract

Efficient prediction of sampling-intensive thermodynamic properties is needed to evaluate material performance and permit high-throughput materials modeling for a diverse array of technology applications. To alleviate the prohibitive computational expense of high-throughput configurational sampling with density functional theory (DFT), surrogate modeling strategies like cluster expansion are many orders of magnitude more efficient but can be difficult to construct in systems with high compositional complexity. We therefore employ minimal-complexity graph neural network models that accurately predict and can even extrapolate to out-of-train distribution formation energies of DFT-relaxed structures from an ideal (unrelaxed) crystallographic representation. This enables the large-scale sampling necessary for various thermodynamic property predictions that may otherwise be intractable and can be achieved with small training data sets. Two exemplars, optimizing the thermodynamic stability of low-density high-entropy alloys and modulating the plateau pressure of hydrogen in metal alloys, demonstrate the power of this approach, which can be extended to a variety of materials discovery and modeling problems.

摘要

为了评估材料性能并实现针对各种技术应用的高通量材料建模,需要对采样密集型热力学性质进行高效预测。为了减轻使用密度泛函理论(DFT)进行高通量构型采样的高昂计算成本,像簇展开这样的代理建模策略效率要高几个数量级,但在具有高成分复杂性的系统中可能难以构建。因此,我们采用了复杂度最低的图神经网络模型,该模型能够准确预测甚至外推从理想(未弛豫)晶体学表示得到的DFT弛豫结构的训练集外分布形成能。这使得各种热力学性质预测所需的大规模采样成为可能,否则这些预测可能难以处理,并且可以用小训练数据集来实现。两个示例,即优化低密度高熵合金的热力学稳定性和调节金属合金中氢的平台压力,展示了这种方法的强大功能,该方法可以扩展到各种材料发现和建模问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验