Xiang Yufan, Wang Bing, Yang Wanchun, Zheng Xiuli, Chen Rongjun, Gong Qiyong, Gu Zhongwei, Liu Yanhui, Luo Kui
Department of Neurosurgery, Department of Radiology, Neurosurgery Research Laboratory, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
Adv Mater. 2024 May;36(18):e2311500. doi: 10.1002/adma.202311500. Epub 2024 Feb 8.
The application of nanomedicines for glioblastoma (GBM) therapy is hampered by the blood-brain barrier (BBB) and the dense glioblastoma tissue. To achieve efficient BBB crossing and deep GBM penetration, this work demonstrates a strategy of active transcellular transport of a mitochondrion-disturbing nanomedicine, pGBEMA-b-pSSPPT (GBEPPT), in the GBM tissue through mitocytosis. GBEPPT is computer-aided designed and prepared by self-assembling a conjugate of an amphiphilic block polymer and a drug podophyllotoxin (PPT). When GBEPPT is delivered to the tumor site, overexpressed γ-glutamyl transpeptidase (GGT) on the brain-blood endothelial cell, or the GBM cell triggered enzymatic hydrolysis of γ-glutamylamide on GBEPPT to reverse its negative charge to positive. Positively charged GBEPPT rapidly enter into the cell and target the mitochondria. These GBEPPT disturb the homeostasis of mitochondria, inducing mitocytosis-mediated extracellular transport of GBEPPT to the neighboring cells via mitosomes. This intracellular-to-intercellular delivery cycle allows GBEPPT to penetrate deeply into the GBM parenchyma, and exert sustainable action of PPT released from GBEPPT on the tumor cells along its penetration path at the tumor site, thus improving the anti-GBM effect. The process of mitocytosis mediated by the mitochondrion-disturbing nanomedicine may offer great potential in enhancing drug penetration through malignant tissues, especially poorly permeable solid tumors.
纳米药物在胶质母细胞瘤(GBM)治疗中的应用受到血脑屏障(BBB)和致密的胶质母细胞瘤组织的阻碍。为了实现有效的血脑屏障穿越和深入的GBM渗透,这项工作展示了一种策略,即通过有丝分裂在GBM组织中实现干扰线粒体的纳米药物pGBEMA-b-pSSPPT(GBEPPT)的主动跨细胞转运。GBEPPT是通过自组装两亲性嵌段聚合物与药物鬼臼毒素(PPT)的共轭物进行计算机辅助设计和制备的。当GBEPPT被递送至肿瘤部位时,脑血内皮细胞或GBM细胞上过度表达的γ-谷氨酰转肽酶(GGT)触发GBEPPT上γ-谷氨酰胺的酶促水解,使其负电荷反转成正电荷。带正电荷的GBEPPT迅速进入细胞并靶向线粒体。这些GBEPPT扰乱线粒体的稳态,通过线粒体小体诱导有丝分裂介导的GBEPPT向邻近细胞的细胞外转运。这种细胞内到细胞间的递送循环使GBEPPT能够深入渗透到GBM实质中,并在肿瘤部位沿着其渗透路径对肿瘤细胞发挥从GBEPPT释放的PPT的持续作用,从而提高抗GBM效果。由干扰线粒体的纳米药物介导的有丝分裂过程在增强药物通过恶性组织,特别是低渗透性实体瘤的渗透方面可能具有巨大潜力。