Moriyama Norihiro, Takenaka Risa, Nagasawa Hiroki, Kanezashi Masakoto, Tsuru Toshinori
Department of Chemical Engineering, Hiroshima University, 1-4-1 Kagami-yama, Higashi-Hiroshima 739-8527, Japan.
ACS Appl Mater Interfaces. 2024 Feb 14;16(6):8086-8097. doi: 10.1021/acsami.3c16844. Epub 2024 Feb 1.
We investigated the previously unexplored domain of water vapor/gas separation using graphene oxide (GO) membranes, expecting future applications, including gas dehumidifiers and superior humidity controllers. While the importance of manipulation of GO nanosheet size and surface chemistry in traditional water purification and gas separation has been acknowledged, their potential impact on water vapor/gas separation remained unexplored until now. We applied sonication and hydrogen peroxide treatments to GO water dispersions and systematically evaluated the size and surface chemistry of each GO nanosheet. Both treatments reduced the GO nanosheet size to shorten the diffusion length, which improved water permeance. In addition, hydrogen peroxide treatment improved the hydrophilicity of the nanosheet. Our novel findings demonstrate that optimization of GO nanosheet size and the increase in their hydrophilicity via hydrogen peroxide treatments for 5 h significantly enhance water permeance, leading to a remarkable water vapor permeance of 4.6 × 10 mol/(m s Pa) at 80 °C, a 3.1-fold improvement over original GO membranes, while maintaining a water vapor/nitrogen permeance ratio exceeding 10,000. These results not only provide important insights into the nature of water vapor/gas separation but also suggest innovative methods for optimizing the GO membrane structure.
我们研究了氧化石墨烯(GO)膜在水蒸气/气体分离方面此前未被探索的领域,期望其能有未来应用,包括气体除湿器和优质湿度控制器。虽然在传统水净化和气体分离中,操控GO纳米片尺寸和表面化学性质的重要性已得到认可,但它们对水蒸气/气体分离的潜在影响直到现在仍未被探索。我们对GO水分散体进行了超声处理和过氧化氢处理,并系统评估了每个GO纳米片的尺寸和表面化学性质。两种处理都减小了GO纳米片的尺寸以缩短扩散长度,从而提高了水渗透率。此外,过氧化氢处理提高了纳米片的亲水性。我们的新发现表明,通过5小时的过氧化氢处理优化GO纳米片尺寸并提高其亲水性,可显著提高水渗透率,在80°C时实现了4.6×10 mol/(m²·s·Pa)的显著水蒸气渗透率,比原始GO膜提高了3.1倍,同时保持水蒸气/氮气渗透率比超过10,000。这些结果不仅为水蒸气/气体分离的本质提供了重要见解,还为优化GO膜结构提出了创新方法。