Suppr超能文献

通过机器学习范式对影像模态进行系统探索,从数据集到检测,以诊断显著肺部疾病:综述。

A methodical exploration of imaging modalities from dataset to detection through machine learning paradigms in prominent lung disease diagnosis: a review.

机构信息

Department of Computer Engineering, J. C. Bose University of Science and Technology, YMCA, Faridabad, India.

Department of Information Technology, School of Engineering and Technology (UIET), CSJM University, Kanpur, India.

出版信息

BMC Med Imaging. 2024 Feb 1;24(1):30. doi: 10.1186/s12880-024-01192-w.

Abstract

BACKGROUND

Lung diseases, both infectious and non-infectious, are the most prevalent cause of mortality overall in the world. Medical research has identified pneumonia, lung cancer, and Corona Virus Disease 2019 (COVID-19) as prominent lung diseases prioritized over others. Imaging modalities, including X-rays, computer tomography (CT) scans, magnetic resonance imaging (MRIs), positron emission tomography (PET) scans, and others, are primarily employed in medical assessments because they provide computed data that can be utilized as input datasets for computer-assisted diagnostic systems. Imaging datasets are used to develop and evaluate machine learning (ML) methods to analyze and predict prominent lung diseases.

OBJECTIVE

This review analyzes ML paradigms, imaging modalities' utilization, and recent developments for prominent lung diseases. Furthermore, the research also explores various datasets available publically that are being used for prominent lung diseases.

METHODS

The well-known databases of academic studies that have been subjected to peer review, namely ScienceDirect, arXiv, IEEE Xplore, MDPI, and many more, were used for the search of relevant articles. Applied keywords and combinations used to search procedures with primary considerations for review, such as pneumonia, lung cancer, COVID-19, various imaging modalities, ML, convolutional neural networks (CNNs), transfer learning, and ensemble learning.

RESULTS

This research finding indicates that X-ray datasets are preferred for detecting pneumonia, while CT scan datasets are predominantly favored for detecting lung cancer. Furthermore, in COVID-19 detection, X-ray datasets are prioritized over CT scan datasets. The analysis reveals that X-rays and CT scans have surpassed all other imaging techniques. It has been observed that using CNNs yields a high degree of accuracy and practicability in identifying prominent lung diseases. Transfer learning and ensemble learning are complementary techniques to CNNs to facilitate analysis. Furthermore, accuracy is the most favored metric for assessment.

摘要

背景

肺部疾病,包括传染性和非传染性疾病,是全球范围内导致死亡率最高的主要原因。医学研究已经确定肺炎、肺癌和 2019 年冠状病毒病(COVID-19)是优先于其他疾病的突出肺部疾病。成像方式,包括 X 射线、计算机断层扫描(CT)、磁共振成像(MRI)、正电子发射断层扫描(PET)等,主要用于医学评估,因为它们提供可以用作计算机辅助诊断系统输入数据集的计算数据。成像数据集用于开发和评估机器学习(ML)方法,以分析和预测突出的肺部疾病。

目的

本综述分析了 ML 范例、成像方式的利用以及突出肺部疾病的最新进展。此外,该研究还探讨了各种公共可用的数据集,这些数据集正被用于突出的肺部疾病。

方法

使用经过同行评审的学术研究知名数据库,如 ScienceDirect、arXiv、IEEE Xplore、MDPI 等,搜索相关文章。应用关键词和组合,结合主要考虑因素进行搜索程序,如肺炎、肺癌、COVID-19、各种成像方式、ML、卷积神经网络(CNNs)、迁移学习和集成学习。

结果

这项研究结果表明,X 射线数据集更适合于检测肺炎,而 CT 扫描数据集则主要用于检测肺癌。此外,在 COVID-19 检测中,X 射线数据集优先于 CT 扫描数据集。分析表明,X 射线和 CT 扫描已经超越了所有其他成像技术。已经观察到,使用 CNN 可以在识别突出的肺部疾病方面实现高度的准确性和实用性。迁移学习和集成学习是 CNN 的补充技术,以促进分析。此外,准确性是评估中最受欢迎的指标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d844/10832080/aafda683b259/12880_2024_1192_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验