IEEE Trans Biomed Eng. 2024 Jul;71(7):2080-2094. doi: 10.1109/TBME.2024.3361716. Epub 2024 Jun 19.
The Rapid Serial Visual Presentation (RSVP) paradigm facilitates target identification in a rapid picture stream, which is applied extensively in military target surveillance and police monitoring. Most researchers concentrate on the single target RSVP-BCI whereas the study of dual-target is scarcely conducted, limiting RSVP application considerably.
This paper proposed a novel classification model named Common Representation Extraction-Targeted Stacked Convolutional Autoencoder (CRE-TSCAE) to detect two targets with one nontarget in RSVP tasks. CRE generated a common representation for each target class to reduce variability from different trials of the same class and distinguish the difference between two targets better. TSCAE aimed to control uncertainty in the training process while requiring less target training data. The model learned a compact and discriminative feature through the training from several learning tasks so as to distinguish each class effectively.
It was validated on the World Robot Contest 2021 and 2022 ERP datasets. Experimental results showed that CRE-TSCAE outperformed the state-of-the-art RSVP decoding algorithms and the Average ACC was 71.25%, improving 6.5% at least over the rest.
It demonstrated that CRE-TSCAE showed a strong ability to extract discriminative latent features in detecting the differences among two targets with nontarget, which guaranteed increased classification accuracy.
CRE-TSCAE provided an innovative and effective classification model for dual-target RSVP-BCI tasks and some insights into the neurophysiological distinction between different targets.
快速连续视觉呈现 (RSVP) 范式促进了快速图像流中的目标识别,该范式在军事目标监测和警察监控中得到了广泛应用。大多数研究人员专注于单个目标 RSVP-BCI,而对双目标的研究很少,这大大限制了 RSVP 的应用。
本文提出了一种名为公共表示提取-目标堆叠卷积自动编码器 (CRE-TSCAE) 的新型分类模型,用于在 RSVP 任务中检测两个目标和一个非目标。CRE 为每个目标类生成一个公共表示,以减少同一类不同试验的可变性,并更好地区分两个目标之间的差异。TSCAE 旨在控制训练过程中的不确定性,同时需要更少的目标训练数据。该模型通过从多个学习任务中进行训练来学习紧凑且有区别的特征,以便有效地区分每个类。
在 2021 年和 2022 年世界机器人竞赛 ERP 数据集上进行了验证。实验结果表明,CRE-TSCAE 优于最先进的 RSVP 解码算法,平均准确率为 71.25%,至少比其他算法提高了 6.5%。
这表明 CRE-TSCAE 在检测非目标的两个目标之间的差异方面具有强大的提取判别潜在特征的能力,从而保证了更高的分类准确性。
CRE-TSCAE 为双目标 RSVP-BCI 任务提供了一种创新而有效的分类模型,并为不同目标之间的神经生理学差异提供了一些见解。