Suppr超能文献

一种带有特定受试者适配器的时谱融合变压器,用于增强RSVP-BCI解码。

A temporal-spectral fusion transformer with subject-specific adapter for enhancing RSVP-BCI decoding.

作者信息

Li Xujin, Wei Wei, Qiu Shuang, He Huiguang

机构信息

Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China; School of Future Technology, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China.

Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.

出版信息

Neural Netw. 2025 Jan;181:106844. doi: 10.1016/j.neunet.2024.106844. Epub 2024 Nov 1.

Abstract

The Rapid Serial Visual Presentation (RSVP)-based Brain-Computer Interface (BCI) is an efficient technology for target retrieval using electroencephalography (EEG) signals. The performance improvement of traditional decoding methods relies on a substantial amount of training data from new test subjects, which increases preparation time for BCI systems. Several studies introduce data from existing subjects to reduce the dependence of performance improvement on data from new subjects, but their optimization strategy based on adversarial learning with extensive data increases training time during the preparation procedure. Moreover, most previous methods only focus on the single-view information of EEG signals, but ignore the information from other views which may further improve performance. To enhance decoding performance while reducing preparation time, we propose a Temporal-Spectral fusion transformer with Subject-specific Adapter (TSformer-SA). Specifically, a cross-view interaction module is proposed to facilitate information transfer and extract common representations across two-view features extracted from EEG temporal signals and spectrogram images. Then, an attention-based fusion module fuses the features of two views to obtain comprehensive discriminative features for classification. Furthermore, a multi-view consistency loss is proposed to maximize the feature similarity between two views of the same EEG signal. Finally, we propose a subject-specific adapter to rapidly transfer the knowledge of the model trained on data from existing subjects to decode data from new subjects. Experimental results show that TSformer-SA significantly outperforms comparison methods and achieves outstanding performance with limited training data from new subjects. This facilitates efficient decoding and rapid deployment of BCI systems in practical use.

摘要

基于快速序列视觉呈现(RSVP)的脑机接口(BCI)是一种利用脑电图(EEG)信号进行目标检索的高效技术。传统解码方法性能的提升依赖于来自新测试对象的大量训练数据,这增加了BCI系统的准备时间。一些研究引入现有对象的数据以减少性能提升对新对象数据的依赖,但其基于对抗学习和大量数据的优化策略增加了准备过程中的训练时间。此外,大多数先前方法仅关注EEG信号的单视图信息,而忽略了可能进一步提升性能的其他视图的信息。为了在减少准备时间的同时提高解码性能,我们提出了一种带有特定对象适配器(TSformer-SA)的时间-频谱融合变压器。具体而言,提出了一个跨视图交互模块,以促进信息传递并提取从EEG时间信号和频谱图图像中提取的两视图特征之间的共同表示。然后,一个基于注意力的融合模块融合两视图的特征,以获得用于分类的综合判别特征。此外,提出了一种多视图一致性损失,以最大化同一EEG信号两视图之间的特征相似性。最后,我们提出了一种特定对象适配器,以快速将在现有对象数据上训练的模型知识转移到对新对象数据进行解码。实验结果表明,TSformer-SA显著优于比较方法,并在来自新对象的有限训练数据下取得了出色的性能。这有助于BCI系统在实际应用中的高效解码和快速部署。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验