Institute for Biochemistry and Biology, Molecular Enzymology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany.
Institute for Experimental Physics, Free University of Berlin, Arnimallee 14, 14195 Berlin, Germany.
J Inorg Biochem. 2024 Apr;253:112487. doi: 10.1016/j.jinorgbio.2024.112487. Epub 2024 Jan 20.
Metal-dependent, nicotine adenine dinucleotide (NAD)-dependent formate dehydrogenases (FDHs) are complex metalloenzymes coupling biochemical transformations through intricate electron transfer pathways. Rhodobacter capsulatus FDH is a model enzyme for understanding coupled catalysis, in that reversible CO reduction and formate oxidation are linked to a flavin mononuclotide (FMN)-bound diaphorase module via seven iron-sulfur (FeS) clusters as a dimer of heterotetramers. Catalysis occurs at a bis-metal-binding pterin (Mo) binding two molybdopterin guanine dinucleotides (bis-MGD), a protein-based Cys residue and a participatory sulfido ligand. Insights regarding the proposed electron transfer mechanism between the bis-MGD and the FMN have been complicated by the discovery that an alternative pathway might occur via intersubunit electron transfer between two [4Fe4S] clusters within electron transfer distance. To clarify this difference, the redox potentials of the bis-MGD and the FeS clusters were determined via redox titration by EPR spectroscopy. Redox potentials for the bis-MGD cofactor and five of the seven FeS clusters could be assigned. Furthermore, substitution of the active site residue Lys295 with Ala resulted in altered enzyme kinetics, primarily due to a more negative redox potential of the A1 [4Fe4S] cluster. Finally, characterization of the monomeric FdsGBAD heterotetramer exhibited slightly decreased formate oxidation activity and similar iron-sulfur clusters reduced relative to the dimeric heterotetramer. Comparison of the measured redox potentials relative to structurally defined FeS clusters support a mechanism by which electron transfer occurs within a heterotetrameric unit, with the interfacial [4Fe4S] cluster serving as a structural component toward the integrity of the heterodimeric structure to drive efficient catalysis.
金属依赖型、烟酰胺腺嘌呤二核苷酸 (NAD) 依赖型甲酸盐脱氢酶 (FDHs) 是复杂的金属酶,通过复杂的电子转移途径耦合生化转化。荚膜红细菌 FDH 是理解偶联催化的模型酶,因为可逆的 CO 还原和甲酸盐氧化通过七个铁硫 (FeS) 簇与黄素单核苷酸 (FMN) 结合的二氢黄素氧化还原酶模块连接,作为异四聚体的二聚体。催化发生在双金属结合蝶呤 (Mo) 上,结合两个钼喋呤鸟嘌呤二核苷酸 (bis-MGD)、一个蛋白 Cys 残基和一个参与的硫代配体。由于发现可能通过两个 [4Fe4S] 簇之间的亚基间电子转移发生替代途径,因此对双 MGD 和 FMN 之间提议的电子转移机制的见解变得复杂。为了澄清这种差异,通过 EPR 光谱的氧化还原滴定确定了 bis-MGD 和 FeS 簇的氧化还原电位。可以分配 bis-MGD 辅因子和七个 FeS 簇中的五个的氧化还原电位。此外,用丙氨酸替代活性位点残基 Lys295 导致酶动力学发生改变,主要是由于 A1 [4Fe4S] 簇的氧化还原电位更负。最后,单体 FdsGBAD 异四聚体的表征表现出略微降低的甲酸盐氧化活性和相似的铁硫簇还原,与二聚异四聚体相比。与结构定义的 FeS 簇相比,所测量的氧化还原电位的特征支持一种机制,其中电子转移在异四聚体单元内发生,界面 [4Fe4S] 簇作为结构组件朝向异二聚体结构的完整性,以驱动有效的催化。