Suppr超能文献

连续时间随机游走模型与分数阶微积分模型在利用直方图分析表征乳腺病变中的比较

Comparison of continuous-time random walk and fractional order calculus models in characterizing breast lesions using histogram analysis.

作者信息

Tang Caili, Li Feng, He Litong, Hu Qilan, Qin Yanjin, Yan Xu, Ai Tao

机构信息

Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.

Department of Radiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441021, China.

出版信息

Magn Reson Imaging. 2024 May;108:47-58. doi: 10.1016/j.mri.2024.01.012. Epub 2024 Feb 1.

Abstract

OBJECTIVE

To compare the diagnostic performance of different mathematical models for DWI and explore whether parameters reflecting spatial and temporal heterogeneity can demonstrate better diagnostic accuracy than the diffusion coefficient parameter in distinguishing benign and malignant breast lesions, using whole-tumor histogram analysis.

METHODS

This retrospective study was approved by the institutional ethics committee and included 104 malignant and 42 benign cases. All patients underwent breast magnetic resonance imaging (MRI) with a 3.0 T MR scanner using the simultaneous multi-slice (SMS) readout-segment ed echo-planar imaging (rs-EPI). Histogram metrics of Mono- apparent diffusion coefficient (ADC), CTRW, and FROC-derived parameters were compared between benign and malignant breast lesions, and the diagnostic performance of each diffusion parameter was evaluated. Statistical analysis was performed using Mann-Whitney U test and receiver operating characteristic (ROC) curve.

RESULTS

The D-median exhibited the highest AUC for distinguishing benign and malignant breast lesions (AUC = 0.965). The temporal heterogeneity parameter α-median generated a statistically higher AUC compared to the spatial heterogeneity parameter β-median (AUC = 0.850 and 0.741, respectively; p = 0.047). Finally, the combination of median values of CTRW parameters displayed a slightly higher AUC than that of FROC parameters, with no significant difference however (AUC = 0.971 and 0.965, respectively; p = 0.172).

CONCLUSIONS

The diffusion coefficient parameter exhibited superior diagnostic performance in distinguishing breast lesions when compared to the temporal and spatial heterogeneity parameters.

摘要

目的

使用全肿瘤直方图分析,比较不同数学模型对扩散加权成像(DWI)的诊断性能,并探讨反映空间和时间异质性的参数在区分乳腺良恶性病变方面是否比扩散系数参数具有更高的诊断准确性。

方法

本回顾性研究经机构伦理委员会批准,纳入104例恶性病例和42例良性病例。所有患者均使用3.0 T磁共振成像(MRI)扫描仪,采用同时多切片(SMS)读出分段回波平面成像(rs-EPI)进行乳腺MRI检查。比较乳腺良恶性病变之间单表观扩散系数(ADC)、连续时间随机游走(CTRW)和基于可分离性快速递归滤波器(FROC)导出参数的直方图指标,并评估每个扩散参数的诊断性能。使用曼-惠特尼U检验和受试者操作特征(ROC)曲线进行统计分析。

结果

D中位数在区分乳腺良恶性病变方面表现出最高的曲线下面积(AUC)(AUC = 0.965)。与空间异质性参数β中位数相比,时间异质性参数α中位数产生的AUC在统计学上更高(分别为AUC = 0.850和0.741;p = 0.047)。最后,CTRW参数中位数的组合显示出比FROC参数略高的AUC,但无显著差异(分别为AUC = 0.971和0.965;p = 0.172)。

结论

与时间和空间异质性参数相比,扩散系数参数在区分乳腺病变方面表现出更好的诊断性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验