Suppr超能文献

基于 Landsat 图像序列的新型框架改进长期地表水绘制。

Improving on mapping long-term surface water with a novel framework based on the Landsat imagery series.

机构信息

State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China.

State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China.

出版信息

J Environ Manage. 2024 Feb 27;353:120202. doi: 10.1016/j.jenvman.2024.120202. Epub 2024 Feb 2.

Abstract

Surface water plays a crucial role in the ecological environment and societal development. Remote sensing detection serves as a significant approach to understand the temporal and spatial change in surface water series (SWS) and to directly construct long-term SWS. Limited by various factors such as cloud, cloud shadow, and problematic satellite sensor monitoring, the existent surface water mapping datasets might be short and incomplete due to losing raw information on certain dates. Improved algorithms are desired to increase the completeness and quality of SWS datasets. The present study proposes an automated framework to detect SWS, based on the Google Earth Engine and Landsat satellite imagery. This framework incorporates implementing a raw image filtering algorithm to increase available images, thereby expanding the completeness. It improves OTSU thresholding by replacing anomaly thresholds with the median value, thus enhancing the accuracy of SWS datasets. Gaps caused by Landsat7 ETM + SLC-off are respired with the random forest algorithm and morphological operations. The results show that this novel framework effectively expands the long-term series of SWS for three surface water bodies with distinct geomorphological patterns. The evaluation of confusion matrices suggests the good performance of extracting surface water, with the overall accuracy ranging from 0.96 to 0.97, and user's accuracy between 0.96 and 0.98, producer's accuracy ranging from 0.83 to 0.89, and Matthews correlation coefficient ranging from 0.87 to 0.9 for several spectral water indices (NDWI, MNDWI, ANNDWI, and AWEI). Compared with the Global Reservoirs Surface Area Dynamics (GRSAD) dataset, our constructed datasets promote greater completeness of SWS datasets by 27.01%-91.89% for the selected water bodies. The proposed framework for detecting SWS shows good potential in enlarging and completing long-term global-scale SWS datasets, capable of supporting assessments of surface-water-related environmental management and disaster prevention.

摘要

地表水在生态环境和社会发展中起着至关重要的作用。遥感检测是了解地表水序列(SWS)时空变化并直接构建长期 SWS 的重要方法。由于某些日期丢失了原始信息,受云、云影和有问题的卫星传感器监测等各种因素的限制,现有的地表水测绘数据集可能很短且不完整。需要改进算法来提高 SWS 数据集的完整性和质量。本研究提出了一种基于 Google Earth Engine 和 Landsat 卫星图像的自动检测 SWS 的框架。该框架包括实施原始图像过滤算法以增加可用图像,从而提高完整性。通过用中位数替换异常阈值来改进 OTSU 阈值处理,从而提高 SWS 数据集的准确性。使用随机森林算法和形态学操作来修复 Landsat7 ETM+SLC-off 造成的空白。结果表明,该新框架有效地扩展了具有不同地貌形态的三个地表水体的长期 SWS 系列。混淆矩阵的评估表明,提取地表水的性能良好,总体精度在 0.96 到 0.97 之间,用户精度在 0.96 到 0.98 之间,生产者精度在 0.83 到 0.89 之间,马修斯相关系数在 0.87 到 0.9 之间,用于几个光谱水指数(NDWI、MNDWI、ANNDWI 和 AWEI)。与全球水库表面积动态数据集(GRSAD)相比,我们构建的数据集通过选择的水体提高了 SWS 数据集的完整性,提高了 27.01%-91.89%。所提出的 SWS 检测框架在扩大和完成长期全球 SWS 数据集方面具有很大的潜力,能够支持对与地表水相关的环境管理和灾害预防的评估。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验