Gao Jinqiang, Zeng Jingyao, Jian Weishun, Mei Yu, Ni Lianshan, Wang Haoji, Wang Kai, Hu Xinyu, Deng Wentao, Zou Guoqiang, Hou Hongshuai, Ji Xiaobo
College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
Sci Bull (Beijing). 2024 Mar 30;69(6):772-783. doi: 10.1016/j.scib.2024.01.026. Epub 2024 Jan 23.
NaFe(PO)(PO) (NFPP) is currently drawing increased attention as a sodium-ion batteries (SIBs) cathode due to the cost-effective and NASICON-type structure features. Owing to the sluggish electron and Na conductivities, however, its real implementation is impeded by the grievous capacity decay and inferior rate capability. Herein, multivalent cation substituted microporous NaFeAl(PO)(PO) (NFAPP) with wide operation-temperature is elaborately designed through regulating structure/interface coupled electron/ion transport. Greatly, the derived Na vacancy and charge rearrangement induced by trivalent Al substitution lower the ions diffusion barriers, thereby endowing faster electron transport and Na mobility. More importantly, the existing Al-O-P bonds strengthen the local environment and alleviate the volume vibration during (de)sodiation, enabling highly reversible valence variation and structural evolution. As a result, remarkable cyclability (over 10,000 loops), ultrafast rate capability (200 C), and exceptional all-climate stability (-40-60 °C) in half/full cells are demonstrated. Given this, the rational work might provide an actionable strategy to promote the electrochemical property of NFPP, thus unveiling the great application prospect of sodium iron mixed phosphate materials.
由于具有成本效益和NASICON型结构特征,NaFe(PO)(PO)(NFPP)目前作为钠离子电池(SIBs)的阴极受到越来越多的关注。然而,由于电子和钠离子传导缓慢,其实际应用受到严重的容量衰减和较差的倍率性能的阻碍。在此,通过调节结构/界面耦合的电子/离子传输,精心设计了具有宽工作温度的多价阳离子取代微孔NaFeAl(PO)(PO)(NFAPP)。极大地,由三价铝取代引起的衍生钠空位和电荷重排降低了离子扩散势垒,并因此赋予了更快的电子传输和钠离子迁移率。更重要的是,现有的Al-O-P键加强了局部环境并减轻了脱/嵌钠过程中的体积振动,从而实现了高度可逆的价态变化和结构演变。结果,在半电池/全电池中展示了出色的循环稳定性(超过10,000次循环)、超快倍率性能(200 C)和优异的全气候稳定性(-40-60°C)。鉴于此,这项合理的工作可能为提升NFPP的电化学性能提供一种可行的策略,从而揭示钠铁混合磷酸盐材料的巨大应用前景。