Suppr超能文献

基于机器学习的老年患者冠状动脉旋磨术后心力衰竭风险预测模型的建立与验证

Establishment and validation of a heart failure risk prediction model for elderly patients after coronary rotational atherectomy based on machine learning.

作者信息

Zhang Lixiang, Zhou Xiaojuan, Cao Jiaoyu

机构信息

Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui, China.

出版信息

PeerJ. 2024 Jan 31;12:e16867. doi: 10.7717/peerj.16867. eCollection 2024.

Abstract

OBJECTIVE

To develop and validate a heart failure risk prediction model for elderly patients after coronary rotational atherectomy based on machine learning methods.

METHODS

A retrospective cohort study was conducted to select 303 elderly patients with severe coronary calcification as the study subjects. According to the occurrence of postoperative heart failure, the study subjects were divided into the heart failure group ( = 53) and the non-heart failure group ( = 250). Retrospective collection of clinical data from the study subjects during hospitalization. After processing the missing values in the original data and addressing sample imbalance using Adaptive Synthetic Sampling (ADASYN) method, the final dataset consists of 502 samples: 250 negative samples (., patients not suffering from heart failure) and 252 positive samples (., patients with heart failure). According to a 7:3 ratio, the datasets of 502 patients were randomly divided into a training set ( = 351) and a validation set ( = 151). On the training set, logistic regression (LR), extreme gradient boosting (XGBoost), support vector machine (SVM), and lightweight gradient boosting machine (LightGBM) algorithms were used to construct heart failure risk prediction models; Evaluate model performance on the validation set by calculating the area under the receiver operating characteristic curve (ROC) curve (AUC), sensitivity, specificity, positive predictive value, negative predictive value, F1-score, and prediction accuracy.

RESULT

A total of 17.49% of 303 patients occured postoperative heart failure. The AUC of LR, XGBoost, SVM, and LightGBM models in the training set were 0.872, 1.000, 0.699, and 1.000, respectively. After 10 fold cross validation, the AUC was 0.863, 0.972, 0.696, and 0.963 in the training set, respectively. Among them, XGBoost had the highest AUC and better predictive performance, while SVM models had the worst performance. The XGBoost model also showed good predictive performance in the validation set (AUC = 0.972, 95% CI [0.951-0.994]). The Shapley additive explanation (SHAP) method suggested that the six characteristic variables of blood cholesterol, serum creatinine, fasting blood glucose, age, triglyceride and NT-proBNP were important positive factors for the occurrence of heart failure, and LVEF was important negative factors for the occurrence of heart failure.

CONCLUSION

The seven characteristic variables of blood cholesterol, blood creatinine, fasting blood glucose, NT-proBNP, age, triglyceride and LVEF are all important factors affecting the occurrence of heart failure. The prediction model of heart failure risk for elderly patients after CRA based on the XGBoost algorithm is superior to SVM, LightGBM and the traditional LR model. This model could be used to assist clinical decision-making and improve the adverse outcomes of patients after CRA.

摘要

目的

基于机器学习方法开发并验证冠状动脉旋磨术后老年患者心力衰竭风险预测模型。

方法

进行一项回顾性队列研究,选取303例重度冠状动脉钙化老年患者作为研究对象。根据术后心力衰竭的发生情况,将研究对象分为心力衰竭组(n = 53)和非心力衰竭组(n = 250)。回顾性收集研究对象住院期间的临床资料。在对原始数据中的缺失值进行处理并使用自适应合成采样(ADASYN)方法解决样本不均衡问题后,最终数据集由502个样本组成:250个阴性样本(即未患心力衰竭的患者)和252个阳性样本(即患心力衰竭的患者)。按照7:3的比例,将502例患者的数据集随机分为训练集(n = 351)和验证集(n = 151)。在训练集上,使用逻辑回归(LR)、极端梯度提升(XGBoost)、支持向量机(SVM)和轻量级梯度提升机(LightGBM)算法构建心力衰竭风险预测模型;通过计算受试者工作特征曲线(ROC)曲线下面积(AUC)、灵敏度、特异度、阳性预测值、阴性预测值、F1分数和预测准确率来评估模型在验证集上的性能。

结果

303例患者中共有17.49%发生术后心力衰竭。训练集中LR、XGBoost、SVM和LightGBM模型的AUC分别为0.872、1.000、0.699和1.000。经过10折交叉验证后,训练集中的AUC分别为0.863、0.972、0.696和0.963。其中,XGBoost的AUC最高且预测性能较好,而SVM模型性能最差。XGBoost模型在验证集中也表现出良好的预测性能(AUC = 0.972,95%CI[0.951 - 0.994])。夏普利值法(SHAP)表明,血胆固醇、血清肌酐、空腹血糖、年龄、甘油三酯和NT - proBNP这六个特征变量是心力衰竭发生的重要正性因素,而左心室射血分数(LVEF)是心力衰竭发生的重要负性因素。

结论

血胆固醇、血肌酐、空腹血糖、NT - proBNP、年龄、甘油三酯和LVEF这七个特征变量均是影响心力衰竭发生的重要因素。基于XGBoost算法的冠状动脉旋磨术后老年患者心力衰竭风险预测模型优于SVM、LightGBM和传统的LR模型。该模型可用于辅助临床决策并改善冠状动脉旋磨术后患者的不良结局。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c40/10838101/c1176c5a144c/peerj-12-16867-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验