Suppr超能文献

机器学习技术在天然气水合物应用中的研究进展

Research Advances in Machine Learning Techniques in Gas Hydrate Applications.

作者信息

Osei Harrison, Bavoh Cornelius B, Lal Bhajan

机构信息

Department of Petroleum Engineering, University of Mines and Technology, P.O. Box 237, Tarkwa, Ghana.

School of Petroleum Studies, University of Mines and Technology, P.O. Box 237, Tarkwa, Ghana.

出版信息

ACS Omega. 2024 Jan 19;9(4):4210-4228. doi: 10.1021/acsomega.3c04825. eCollection 2024 Jan 30.

Abstract

The complex modeling accuracy of gas hydrate models has been recently improved owing to the existence of data for machine learning tools. In this review, we discuss most of the machine learning tools used in various hydrate-related areas such as phase behavior predictions, hydrate kinetics, CO capture, and gas hydrate natural distribution and saturation. The performance comparison between machine learning and conventional gas hydrate models is also discussed in detail. This review shows that machine learning methods have improved hydrate phase property predictions and could be adopted in current and new gas hydrate simulation software for better and more accurate results.

摘要

由于机器学习工具所需数据的存在,气体水合物模型的复杂建模精度最近有所提高。在本综述中,我们讨论了在各种与水合物相关的领域中使用的大多数机器学习工具,如相行为预测、水合物动力学、二氧化碳捕集以及天然气水合物的自然分布和饱和度。还详细讨论了机器学习模型与传统天然气水合物模型之间的性能比较。本综述表明,机器学习方法改进了水合物相性质预测,可应用于当前及新的天然气水合物模拟软件,以获得更好、更准确的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/294a/10831969/1f8d97403443/ao3c04825_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验