Suppr超能文献

微环境和给药方式对增强型细胞穿透肽非病毒基因递送效率的影响

Effects of Microenvironment and Dosing on Efficiency of Enhanced Cell Penetrating Peptide Nonviral Gene Delivery.

作者信息

Dixon James E, Wellington Vanessa, Elnima Alaa, Eltaher Hoda M

机构信息

Regenerative Medicine and Cellular Therapies Division, The University of Nottingham Biodiscovery Institute (BDI), School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K.

NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham NG7 2RD, U.K.

出版信息

ACS Omega. 2024 Jan 18;9(4):5014-5023. doi: 10.1021/acsomega.3c09306. eCollection 2024 Jan 30.

Abstract

Transfection, defined as functional delivery of cell-internalized nucleic acids, is dependent on many factors linked to formulation, vector, cell type, and microenvironmental culture conditions. We previously developed a technology termed glycosaminoglycan (GAG)-binding enhanced transduction (GET) to efficiently deliver a variety of cargoes intracellularly, using GAG-binding peptides and cell penetrating peptides (CPPs) in the form of nanoparticles, using conventional cell culture. Herein, we demonstrate that the most simple GET transfection formulation (employing the FLR peptide) is relatively poor at transfecting cells at increasingly lower dosages. However, with an endosomally escaping version (FLR:FLH peptide formulations) we demonstrate more effective transfection of cells with lower quantities of plasmid (p)DNA . We assessed the ability of single and serial delivery of our formulations to readily transfect cells and determined that temperature, pH, and atmospheric pressure can significantly affect transfected cell number and expression levels. Cytocompatible temperatures that maintain high cell metabolism (20-37 °C) were the optimal for transfection. Interestingly, serial delivery can maintain and enhance expression without viability being compromised, and alkaline pH conditions can aid overall efficiencies. Positive atmospheric pressures can also improve the transgene expression levels generated by GET transfection on a single-cell level. Novel nanotechnologies and gene therapeutics such as GET could be transformative for future regenerative medicine strategies. It will be important to understand how such approaches can be optimized at the formulation and application levels in order to achieve efficacy that will be competitive with viral strategies.

摘要

转染定义为细胞内化核酸的功能性递送,它取决于许多与制剂、载体、细胞类型和微环境培养条件相关的因素。我们之前开发了一种称为糖胺聚糖(GAG)结合增强转导(GET)的技术,以使用常规细胞培养,通过纳米颗粒形式的GAG结合肽和细胞穿透肽(CPP)有效地将多种货物递送至细胞内。在此,我们证明最简单的GET转染制剂(采用FLR肽)在越来越低的剂量下转染细胞的效果相对较差。然而,使用一种能从内涵体逃逸的变体(FLR:FLH肽制剂),我们证明用较少量的质粒(p)DNA就能更有效地转染细胞。我们评估了我们的制剂单次和连续递送对细胞进行转染的能力,并确定温度、pH值和大气压会显著影响转染细胞的数量和表达水平。维持高细胞代谢的细胞相容性温度(20-37°C)是转染的最佳温度。有趣的是,连续递送可以在不损害细胞活力的情况下维持和增强表达,碱性pH条件有助于提高整体效率。正大气压也可以在单细胞水平上提高GET转染产生的转基因表达水平。诸如GET之类的新型纳米技术和基因治疗方法可能会改变未来的再生医学策略。了解如何在制剂和应用层面优化此类方法以实现与病毒策略相竞争的疗效将非常重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54b0/10831962/1c51b562f215/ao3c09306_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验