Suppr超能文献

高效的三维梯度内转导用于编程细胞命运。

Highly efficient intracellular transduction in three-dimensional gradients for programming cell fate.

机构信息

Wolfson Centre for Stem Cells, Tissue Engineering, and Modelling (STEM), Centre of Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt.

Wolfson Centre for Stem Cells, Tissue Engineering, and Modelling (STEM), Centre of Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK.

出版信息

Acta Biomater. 2016 Sep 1;41:181-92. doi: 10.1016/j.actbio.2016.06.004. Epub 2016 Jun 3.

Abstract

UNLABELLED

Fundamental behaviour such as cell fate, growth and death are mediated through the control of key genetic transcriptional regulators. These regulators are activated or repressed by the integration of multiple signalling molecules in spatio-temporal gradients. Engineering these gradients is complex but considered key in controlling tissue formation in regenerative medicine approaches. Direct programming of cells using exogenously delivered transcription factors can by-pass growth factor complexity but there is still a requirement to deliver such activity spatio-temporally. We previously developed a technology termed GAG-binding enhanced transduction (GET) to efficiently deliver a variety of cargoes intracellularly using GAG-binding domains to promote cell targeting, and cell penetrating peptides (CPPs) to allow cell entry. Herein we demonstrate that GET can be used in a three dimensional (3D) hydrogel matrix to produce gradients of intracellular transduction of mammalian cells. Using a compartmentalised diffusion model with a source-gel-sink (So-G-Si) assembly, we created gradients of reporter proteins (mRFP1-tagged) and a transcription factor (TF, myogenic master regulator MyoD) and showed that GET can be used to deliver molecules into cells spatio-temporally by monitoring intracellular transduction and gene expression programming as a function of location and time. The ability to spatio-temporally control the intracellular delivery of functional proteins will allow the establishment of gradients of cell programming in hydrogels and approaches to direct cellular behaviour for many regenerative medicine applications.

STATEMENT OF SIGNIFICANCE

Regenerative medicine aims to reform functional biological tissues by controlling cell behaviour. Growth factors (GFs) are soluble cues presented to cells in spatio-temporal gradients and play important roles programming cell fate and gene expression. The efficient transduction of cells by GET (Glycosaminoglycan-enhanced transducing)-tagged transcription factors (TFs) can be used to by-pass GF-stimulation and directly program cells. For the first time we demonstrate diffusion of GET proteins generate stable protein transduction gradients. We demonstrated the feasibility of creating spatio-temporal gradients of GET-MyoD and show differential programing of myogenic differentiation. We believe that GET could provide a powerful tool to program cell behaviour using gradients of recombinant proteins that allow tissue generation directly by programming gene expression with TFs.

摘要

未加标签

基本行为,如细胞命运、生长和死亡,是通过控制关键基因转录调节剂来介导的。这些调节剂通过整合时空梯度中的多个信号分子来激活或抑制。工程这些梯度很复杂,但被认为是再生医学方法中控制组织形成的关键。使用外源性传递转录因子直接对细胞进行编程可以绕过生长因子的复杂性,但仍然需要时空传递这种活性。我们之前开发了一种称为 GAG 结合增强转导 (GET) 的技术,该技术使用 GAG 结合结构域来促进细胞靶向,以及细胞穿透肽 (CPP) 来允许细胞进入,从而有效地将各种货物递送到细胞内。本文中,我们证明 GET 可用于三维 (3D) 水凝胶基质中,以产生哺乳动物细胞的细胞内转导梯度。使用具有源凝胶-汇(So-G-Si)组件的分区扩散模型,我们创建了报告蛋白(mRFP1 标记)和转录因子(肌形成主调节剂 MyoD)的梯度,并表明 GET 可用于通过监测细胞内转导和基因表达编程作为位置和时间的函数来时空递分子到细胞中。时空控制功能性蛋白质细胞内递送的能力将允许在水凝胶中建立细胞编程梯度,并为许多再生医学应用直接控制细胞行为的方法。

意义声明

再生医学旨在通过控制细胞行为来重塑功能性生物组织。生长因子(GFs)是呈时空梯度递送到细胞的可溶性线索,在编程细胞命运和基因表达方面发挥着重要作用。GET(糖胺聚糖增强转导)标记的转录因子(TFs)对细胞的高效转导可用于绕过 GF 刺激并直接编程细胞。我们首次证明 GET 蛋白的扩散产生稳定的蛋白转导梯度。我们演示了创建 GET-MyoD 时空梯度的可行性,并显示出肌生成分化的差异编程。我们相信,GET 可以提供一种强大的工具,通过梯度的重组蛋白来编程细胞行为,从而直接通过 TF 编程基因表达来生成组织。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验