Suppr超能文献

一种基因激活支架的研制,该支架整合了多功能穿透细胞肽,用于递送 pSDF-1α,以增强组织工程应用中的血管生成。

Development of a Gene-Activated Scaffold Incorporating Multifunctional Cell-Penetrating Peptides for pSDF-1α Delivery for Enhanced Angiogenesis in Tissue Engineering Applications.

机构信息

Tissue Engineering Research Group, Royal College of Surgeons in Ireland (RCSI), D02 YN77 Dublin, Ireland.

Advanced Materials and Bioengineering Research Centre (AMBER), RCSI, D02 YN77 Dublin, Ireland.

出版信息

Int J Mol Sci. 2022 Jan 27;23(3):1460. doi: 10.3390/ijms23031460.

Abstract

Non-viral gene delivery has become a popular approach in tissue engineering, as it permits the transient delivery of a therapeutic gene, in order to stimulate tissue repair. However, the efficacy of non-viral delivery vectors remains an issue. Our lab has created gene-activated scaffolds by incorporating various non-viral delivery vectors, including the glycosaminoglycan-binding enhanced transduction (GET) peptide into collagen-based scaffolds with proven osteogenic potential. A modification to the GET peptide (FLR) by substitution of arginine residues with histidine (FLH) has been designed to enhance plasmid DNA (pDNA) delivery. In this study, we complexed pDNA with combinations of FLR and FLH peptides, termed GET* nanoparticles. We sought to enhance our gene-activated scaffold platform by incorporating GET* nanoparticles into collagen-nanohydroxyapatite scaffolds with proven osteogenic capacity. GET* N/P 8 was shown to be the most effective formulation for delivery to MSCs in 2D. Furthermore, GET* N/P 8 nanoparticles incorporated into collagen-nanohydroxyapatite (coll-nHA) scaffolds at a 1:1 ratio of collagen:nanohydroxyapatite was shown to be the optimal gene-activated scaffold. pDNA encoding stromal-derived factor 1α (pSDF-1α), an angiogenic chemokine which plays a role in BMP mediated differentiation of MSCs, was then delivered to MSCs using our optimised gene-activated scaffold platform, with the aim of significantly increasing angiogenesis as an important precursor to bone repair. The GET* N/P 8 coll-nHA scaffolds successfully delivered pSDF-1α to MSCs, resulting in a significant, sustained increase in SDF-1α protein production and an enhanced angiogenic effect, a key precursor in the early stages of bone repair.

摘要

非病毒基因传递已成为组织工程中的一种流行方法,因为它可以暂时传递治疗性基因,以刺激组织修复。然而,非病毒传递载体的功效仍然是一个问题。我们的实验室通过将各种非病毒传递载体(包括糖胺聚糖结合增强转导(GET)肽)整合到具有已证明成骨潜力的胶原基支架中,创建了基因激活支架。通过用组氨酸取代精氨酸残基对 GET 肽(FLR)进行修饰(FLH)已被设计用来增强质粒 DNA(pDNA)的传递。在这项研究中,我们将 pDNA 与 FLR 和 FLH 肽的组合(称为 GET纳米颗粒)复合。我们试图通过将 GET纳米颗粒整合到具有已证明成骨能力的胶原-纳米羟基磷灰石支架中来增强我们的基因激活支架平台。GETN/P8 被证明是在 2D 中向 MSC 传递的最有效配方。此外,将 GETN/P8 纳米颗粒以胶原:纳米羟基磷灰石 1:1 的比例掺入胶原-纳米羟基磷灰石(coll-nHA)支架中,被证明是最佳的基因激活支架。pDNA 编码基质衍生因子 1α(pSDF-1α),这是一种趋化因子,在 BMP 介导的 MSC 分化中起作用,然后使用我们优化的基因激活支架平台将其递送至 MSC,目的是显著增加血管生成,这是骨修复的重要前提。GET*N/P8 coll-nHA 支架成功地将 pSDF-1α递送至 MSC,导致 SDF-1α 蛋白产生显著且持续增加,并增强了血管生成作用,这是骨修复早期的关键前提。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a5c/8835777/b8bb2a11cd9f/ijms-23-01460-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验