Suppr超能文献

功能性电刺激微电极对原代神经胶质细胞的生物相容性评估

biocompatibility evaluation of functional electrically stimulating microelectrodes on primary glia.

作者信息

Tsui Christopher T, Mirkiani Soroush, Roszko David A, Churchward Matthew A, Mushahwar Vivian K, Todd Kathryn G

机构信息

Department of Biomedical Engineering, University of Alberta, Edmonton, AB, Canada.

Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada.

出版信息

Front Bioeng Biotechnol. 2024 Jan 19;12:1351087. doi: 10.3389/fbioe.2024.1351087. eCollection 2024.

Abstract

Neural interfacing devices interact with the central nervous system to alleviate functional deficits arising from disease or injury. This often entails the use of invasive microelectrode implants that elicit inflammatory responses from glial cells and leads to loss of device function. Previous work focused on improving implant biocompatibility by modifying electrode composition; here, we investigated the direct effects of electrical stimulation on glial cells at the electrode interface. A high-throughput system that assesses primary glial cell response to biphasic stimulation waveforms at 0 mA, 0.15 mA, and 1.5 mA was developed and optimized. Primary mixed glial cell cultures were generated from heterozygous CX3CR-1 mice, electrically stimulated for 4 h/day over 3 days using 75 μm platinum-iridium microelectrodes, and biomarker immunofluorescence was measured. Electrodes were then imaged on a scanning electron microscope to assess sustained electrode damage. Fluorescence and electron microscopy analyses suggest varying degrees of localized responses for each biomarker assayed (Hoescht, EGFP, GFAP, and IL-1β), a result that expands on comparable models. This system allows for the comparison of a breadth of electrical stimulation parameters, and opens another avenue through which neural interfacing device developers can improve biocompatibility and longevity of electrodes in tissue.

摘要

神经接口设备与中枢神经系统相互作用,以减轻疾病或损伤引起的功能缺陷。这通常需要使用侵入性微电极植入物,而这些植入物会引发胶质细胞的炎症反应并导致设备功能丧失。以往的工作重点是通过改变电极成分来提高植入物的生物相容性;在这里,我们研究了电刺激对电极界面处胶质细胞的直接影响。我们开发并优化了一个高通量系统,该系统可评估原代胶质细胞对0 mA、0.15 mA和1.5 mA双相刺激波形的反应。从杂合子CX3CR-1小鼠中培养出原代混合胶质细胞培养物,使用75μm铂铱微电极在3天内每天电刺激4小时,并测量生物标志物免疫荧光。然后在扫描电子显微镜下对电极成像,以评估电极的持续性损伤。荧光和电子显微镜分析表明,每种检测的生物标志物(Hoescht、EGFP、GFAP和IL-1β)都有不同程度的局部反应,这一结果扩展了类似模型。该系统允许比较广泛的电刺激参数,并为神经接口设备开发者提供了另一条途径,以提高电极在组织中的生物相容性和寿命。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2160/10834782/f75fcf6d52ca/fbioe-12-1351087-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验