Suppr超能文献

用于神经植入应用的碳植入二氧化钛纳米管支架上的层粘连蛋白吸附以及神经元和神经胶质细胞的黏附

Laminin Adsorption and Adhesion of Neurons and Glial Cells on Carbon Implanted Titania Nanotube Scaffolds for Neural Implant Applications.

作者信息

Frenzel Jan, Kupferer Astrid, Zink Mareike, Mayr Stefan G

机构信息

Leibniz Institute of Surface Engineering (IOM), 04318 Leipzig, Germany.

Division of Surface Physics, Faculty of Physics and Earth Sciences, Leipzig University, 04103 Leipzig, Germany.

出版信息

Nanomaterials (Basel). 2022 Nov 1;12(21):3858. doi: 10.3390/nano12213858.

Abstract

Interfacing neurons persistently to conductive matter constitutes one of the key challenges when designing brain-machine interfaces such as neuroelectrodes or retinal implants. Novel materials approaches that prevent occurrence of loss of long-term adhesion, rejection reactions, and glial scarring are highly desirable. Ion doped titania nanotube scaffolds are a promising material to fulfill all these requirements while revealing sufficient electrical conductivity, and are scrutinized in the present study regarding their neuron-material interface. Adsorption of laminin, an essential extracellular matrix protein of the brain, is comprehensively analyzed. The implantation-dependent decline in laminin adsorption is revealed by employing surface characteristics such as nanotube diameter, ζ-potential, and surface free energy. Moreover, the viability of U87-MG glial cells and SH-SY5Y neurons after one and four days are investigated, as well as the material's cytotoxicity. The higher conductivity related to carbon implantation does not affect the viability of neurons, although it impedes glial cell proliferation. This gives rise to novel titania nanotube based implant materials with long-term stability, and could reduce undesirable glial scarring.

摘要

在设计诸如神经电极或视网膜植入物等脑机接口时,使神经元与导电物质持久连接是关键挑战之一。非常需要能够防止长期粘附丧失、排斥反应和胶质瘢痕形成的新型材料方法。离子掺杂二氧化钛纳米管支架是一种很有前途的材料,能满足所有这些要求,同时具有足够的导电性,本研究对其神经元 - 材料界面进行了详细审查。全面分析了层粘连蛋白(一种大脑必需的细胞外基质蛋白)的吸附情况。通过利用纳米管直径、ζ电位和表面自由能等表面特性,揭示了层粘连蛋白吸附随植入的下降情况。此外,还研究了U87 - MG胶质细胞和SH - SY5Y神经元在1天和4天后的活力以及材料的细胞毒性。与碳植入相关的较高导电性虽然会阻碍胶质细胞增殖,但不会影响神经元的活力。这产生了具有长期稳定性的新型基于二氧化钛纳米管的植入材料,并可能减少不良的胶质瘢痕形成。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9901/9656521/c3b3493cdf92/nanomaterials-12-03858-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验