文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于银纳米粒子的局域表面等离子体共振生物传感器用于大肠杆菌检测。

Silver nanoparticles-based localized surface plasmon resonance biosensor for Escherichia coli detection.

机构信息

Department of Physics, Universitas Tadulako, Palu, Indonesia.

Department of Physics, Universitas Tadulako, Palu, Indonesia.

出版信息

Spectrochim Acta A Mol Biomol Spectrosc. 2024 Apr 15;311:123985. doi: 10.1016/j.saa.2024.123985. Epub 2024 Feb 1.


DOI:10.1016/j.saa.2024.123985
PMID:38316074
Abstract

Escherichia coli (E. coli) bacteria with varying solution concentrations have been successfully detected using silver nanoparticles (Ag NPs)-based localized surface plasmon resonance (LSPR) biosensors. The Ag NPs were effectively synthesized by a chemical method using trisodium citrate with L-Histidine (L-His) and deposited on the surface of Au thin film-coated half-cylinder BK-7 prisms. He-Ne laser with a wavelength of 632.8 nm was used to generate LSPR phenomena in Kretschmann configuration with prism/Au thin film/His-Ag NPs/E. coli bacteria/air structure arrangements. The variation of E. coli bacteria concentration was carried out to determine the effect of E. coli bacteria concentration on the LSPR curve characteristics. The characterization results showed that the size of Ag NPs was 18.7 nm, and that of His-Ag NPs was 17.9 nm. Selected area electron diffraction results indicated the formation of diffraction rings with the presence of lattice planes (111), (200), (220), and (311), proving the face-centered cubic crystal structure of silver. The absorbance peak of Ag NPs shifted from a wavelength of 421-414 nm with an increase in band gap energy from 2.94 eV to 2.99 eV, along with a decreased average particle size. The functional groups observed in His-Ag NPs showed wavenumbers at 3320 to 3318 cm, 2106 to 2129 cm, and 1635 cm showing the OH, CH, and C CO bonds, respectively. The SPR angle of the prism/Au thin film/air structure is 44.80°. Meanwhile, the LSPR angle for the prism/Au thin film/His-Ag NPs/air structure is 44.92°. There is an increase in the LSPR angle by 0.12°. Moreover, the minimum reflectance increases by 0.02. After detecting E. coli bacteria, the LSPR angle shifted by 0.26°, 0.38°, and 0.49° for concentrations of 6.0 × 10 CFU/mL, 6.0 × 10 CFU/mL and 6.0 × 10 CFU/mL respectively. However, the minimum reflectance rose from 0.09° to 0.14°, 0.20°, and 0.22°. Moreover, SPR testing with the structure of the prism/Au thin film/E. coli bacteria/air was carried out to determine the contribution of His-Ag NPs for detecting E. coli bacteria. The results showed that no angular shift occurs. These results indicate that using Ag NPs encapsulated with L-His is essential in amplifying the SPR signal and detecting E. coli bacteria. There was a notable alteration in both the LSPR angle and minimum reflectance indicating that adding His-Ag NPs facilitated the interaction between the E. coli and the sensor surface, thereby enhancing the performance of LSPR-based sensors for E. coli detection for low limit of detection value at 0.47 CFU/mL.

摘要

利用银纳米粒子(Ag NPs)基局域表面等离子体共振(LSPR)生物传感器成功检测了具有不同溶液浓度的大肠杆菌(E. coli)细菌。Ag NPs 通过使用柠檬酸三钠和 L-组氨酸(L-His)的化学方法有效合成,并沉积在 Au 薄膜涂覆的半圆柱 BK-7 棱镜表面上。使用波长为 632.8nm 的氦氖激光在棱镜/Au 薄膜/His-Ag NPs/E. coli 细菌/空气结构排列的克氏配置中产生 LSPR 现象。改变大肠杆菌细菌浓度以确定大肠杆菌细菌浓度对 LSPR 曲线特征的影响。表征结果表明,Ag NPs 的尺寸为 18.7nm,His-Ag NPs 的尺寸为 17.9nm。选区电子衍射结果表明,存在晶格平面(111)、(200)、(220)和(311)的衍射环形成,证明了银的面心立方晶体结构。Ag NPs 的吸收峰从 421-414nm 处的波长偏移,随着能带隙能量从 2.94eV 增加到 2.99eV,平均粒径减小。在 His-Ag NPs 中观察到的官能团在 3320 到 3318cm、2106 到 2129cm 和 1635cm 处显示出 OH、CH 和 C CO 键的波数。棱镜/Au 薄膜/空气结构的 SPR 角为 44.80°。同时,棱镜/Au 薄膜/His-Ag NPs/空气结构的 LSPR 角为 44.92°。LSPR 角增加了 0.12°。此外,最小反射率增加了 0.02。检测到大肠杆菌细菌后,浓度为 6.0×10 CFU/mL、6.0×10 CFU/mL 和 6.0×10 CFU/mL 的大肠杆菌细菌的 LSPR 角分别偏移了 0.26°、0.38°和 0.49°。然而,最小反射率从 0.09°增加到 0.14°、0.20°和 0.22°。此外,还进行了带有棱镜/Au 薄膜/大肠杆菌细菌/空气结构的 SPR 测试,以确定 His-Ag NPs 对检测大肠杆菌细菌的贡献。结果表明,没有角度偏移。这些结果表明,使用封装 L-His 的 Ag NPs 对于放大 SPR 信号和检测大肠杆菌细菌是必不可少的。LSPR 角和最小反射率都发生了明显的变化,表明添加 His-Ag NPs 促进了大肠杆菌与传感器表面的相互作用,从而提高了基于 LSPR 的传感器对大肠杆菌检测的性能,其检测下限值低至 0.47 CFU/mL。

相似文献

[1]
Silver nanoparticles-based localized surface plasmon resonance biosensor for Escherichia coli detection.

Spectrochim Acta A Mol Biomol Spectrosc. 2024-4-15

[2]
Core-Shell Gold/Silver Nanoparticles for Localized Surface Plasmon Resonance-Based Naked-Eye Toxin Biosensing.

ACS Appl Mater Interfaces. 2019-12-5

[3]
Silver nanoparticles on a plastic platform for localized surface plasmon resonance biosensing.

Anal Chem. 2010-8-1

[4]
Localized surface plasmon resonance-based fiber-optic sensor for the detection of triacylglycerides using silver nanoparticles.

J Biomed Opt. 2017-10

[5]
A comparative analysis of localized and propagating surface plasmon resonance sensors: the binding of concanavalin a to a monosaccharide functionalized self-assembled monolayer.

J Am Chem Soc. 2004-10-6

[6]
Computational Study of Sensitivity Enhancement in Surface Plasmon Resonance (SPR) Biosensors by Using the Inclusion of the Core-Shell for Biomaterial Sample Detection.

Biosensors (Basel). 2018-8-7

[7]
Enhancing the Extinction Efficiency and Plasmonic Response of Bimetallic Nanoparticles of Au-Ag in Robust Thin Film Sensing Platforms.

Sensors (Basel). 2023-12-4

[8]
Photocatalytic and antibacterial activities of gold and silver nanoparticles synthesized using biomass of Parkia roxburghii leaf.

J Photochem Photobiol B. 2016-1

[9]
Critical Issues on the Surface Functionalization of Plasmonic Au-Ag/TiO Thin Films with Thiolated Oligonucleotide-Based Biorecognition Elements.

Biosensors (Basel). 2024-3-27

[10]
A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles.

J Am Chem Soc. 2002-9-4

引用本文的文献

[1]
A Review of the Diagnostic Approaches for the Detection of Antimicrobial Resistance, Including the Role of Biosensors in Detecting Carbapenem Resistance Genes.

Genes (Basel). 2025-6-30

[2]
Advancements in silver-based nanocatalysts for organic transformations and other applications: a comprehensive review (2019-2024).

RSC Adv. 2025-5-27

[3]
Nanoparticles and Nanomaterials: A Review from the Standpoint of Pharmacy and Medicine.

Pharmaceutics. 2025-5-16

[4]
Silver Nanoparticles for Biosensing and Drug Delivery: A Mechanical Study on DNA Interaction.

Biosensors (Basel). 2025-5-21

[5]
Enhanced spectral signatures with Ag nanoarrays in hyperspectral microscopy for CNN-based microplastics classfication.

Front Chem. 2025-3-21

[6]
Nanotechnology improves the detection of bacteria: Recent advances and future perspectives.

Heliyon. 2024-5-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索