Department of Physics, Universitas Tadulako, Palu, Indonesia.
Department of Physics, Universitas Tadulako, Palu, Indonesia.
Spectrochim Acta A Mol Biomol Spectrosc. 2024 Apr 15;311:123985. doi: 10.1016/j.saa.2024.123985. Epub 2024 Feb 1.
Escherichia coli (E. coli) bacteria with varying solution concentrations have been successfully detected using silver nanoparticles (Ag NPs)-based localized surface plasmon resonance (LSPR) biosensors. The Ag NPs were effectively synthesized by a chemical method using trisodium citrate with L-Histidine (L-His) and deposited on the surface of Au thin film-coated half-cylinder BK-7 prisms. He-Ne laser with a wavelength of 632.8 nm was used to generate LSPR phenomena in Kretschmann configuration with prism/Au thin film/His-Ag NPs/E. coli bacteria/air structure arrangements. The variation of E. coli bacteria concentration was carried out to determine the effect of E. coli bacteria concentration on the LSPR curve characteristics. The characterization results showed that the size of Ag NPs was 18.7 nm, and that of His-Ag NPs was 17.9 nm. Selected area electron diffraction results indicated the formation of diffraction rings with the presence of lattice planes (111), (200), (220), and (311), proving the face-centered cubic crystal structure of silver. The absorbance peak of Ag NPs shifted from a wavelength of 421-414 nm with an increase in band gap energy from 2.94 eV to 2.99 eV, along with a decreased average particle size. The functional groups observed in His-Ag NPs showed wavenumbers at 3320 to 3318 cm, 2106 to 2129 cm, and 1635 cm showing the OH, CH, and C CO bonds, respectively. The SPR angle of the prism/Au thin film/air structure is 44.80°. Meanwhile, the LSPR angle for the prism/Au thin film/His-Ag NPs/air structure is 44.92°. There is an increase in the LSPR angle by 0.12°. Moreover, the minimum reflectance increases by 0.02. After detecting E. coli bacteria, the LSPR angle shifted by 0.26°, 0.38°, and 0.49° for concentrations of 6.0 × 10 CFU/mL, 6.0 × 10 CFU/mL and 6.0 × 10 CFU/mL respectively. However, the minimum reflectance rose from 0.09° to 0.14°, 0.20°, and 0.22°. Moreover, SPR testing with the structure of the prism/Au thin film/E. coli bacteria/air was carried out to determine the contribution of His-Ag NPs for detecting E. coli bacteria. The results showed that no angular shift occurs. These results indicate that using Ag NPs encapsulated with L-His is essential in amplifying the SPR signal and detecting E. coli bacteria. There was a notable alteration in both the LSPR angle and minimum reflectance indicating that adding His-Ag NPs facilitated the interaction between the E. coli and the sensor surface, thereby enhancing the performance of LSPR-based sensors for E. coli detection for low limit of detection value at 0.47 CFU/mL.
利用银纳米粒子(Ag NPs)基局域表面等离子体共振(LSPR)生物传感器成功检测了具有不同溶液浓度的大肠杆菌(E. coli)细菌。Ag NPs 通过使用柠檬酸三钠和 L-组氨酸(L-His)的化学方法有效合成,并沉积在 Au 薄膜涂覆的半圆柱 BK-7 棱镜表面上。使用波长为 632.8nm 的氦氖激光在棱镜/Au 薄膜/His-Ag NPs/E. coli 细菌/空气结构排列的克氏配置中产生 LSPR 现象。改变大肠杆菌细菌浓度以确定大肠杆菌细菌浓度对 LSPR 曲线特征的影响。表征结果表明,Ag NPs 的尺寸为 18.7nm,His-Ag NPs 的尺寸为 17.9nm。选区电子衍射结果表明,存在晶格平面(111)、(200)、(220)和(311)的衍射环形成,证明了银的面心立方晶体结构。Ag NPs 的吸收峰从 421-414nm 处的波长偏移,随着能带隙能量从 2.94eV 增加到 2.99eV,平均粒径减小。在 His-Ag NPs 中观察到的官能团在 3320 到 3318cm、2106 到 2129cm 和 1635cm 处显示出 OH、CH 和 C CO 键的波数。棱镜/Au 薄膜/空气结构的 SPR 角为 44.80°。同时,棱镜/Au 薄膜/His-Ag NPs/空气结构的 LSPR 角为 44.92°。LSPR 角增加了 0.12°。此外,最小反射率增加了 0.02。检测到大肠杆菌细菌后,浓度为 6.0×10 CFU/mL、6.0×10 CFU/mL 和 6.0×10 CFU/mL 的大肠杆菌细菌的 LSPR 角分别偏移了 0.26°、0.38°和 0.49°。然而,最小反射率从 0.09°增加到 0.14°、0.20°和 0.22°。此外,还进行了带有棱镜/Au 薄膜/大肠杆菌细菌/空气结构的 SPR 测试,以确定 His-Ag NPs 对检测大肠杆菌细菌的贡献。结果表明,没有角度偏移。这些结果表明,使用封装 L-His 的 Ag NPs 对于放大 SPR 信号和检测大肠杆菌细菌是必不可少的。LSPR 角和最小反射率都发生了明显的变化,表明添加 His-Ag NPs 促进了大肠杆菌与传感器表面的相互作用,从而提高了基于 LSPR 的传感器对大肠杆菌检测的性能,其检测下限值低至 0.47 CFU/mL。
Spectrochim Acta A Mol Biomol Spectrosc. 2024-4-15
ACS Appl Mater Interfaces. 2019-12-5
Pharmaceutics. 2025-5-16
Biosensors (Basel). 2025-5-21