Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface (LRS) , 4 Place Jussieu , F 75005 Paris , France.
Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM) , 4 Place Jussieu , F 75005 Paris , France.
ACS Appl Mater Interfaces. 2019 Dec 18;11(50):46462-46471. doi: 10.1021/acsami.9b14980. Epub 2019 Dec 5.
The localized surface plasmon resonance (LSPR) phenomenon provides a versatile property for biodetection. Herein, this unique feature was employed to build a homogeneous optical biosensor to detect staphylococcal enterotoxin A (SEA) in solution down to very low levels by naked-eye readout. If the initial position of the LSPR band is located in the cyan region, even a small red shift (∼2-3 nm) induced by a refractive index change close to the surface of nanoparticles (NPs) could make the light absorption transit from cyan to green and become visually detectable via a concomitant change in the complementary colors. In this work, we aimed at synthesizing two types of NPs based on compositionally complex core-shell NPs-Ag shells on AuNPs (Au@AgNPs) and Ag inside gold nanoshells (Ag@AuNPs). By controlling the thickness of the shells and their surface chemistry with anti-SEA antibody (Ab), the LSPR band was tuned to near 495 and 520 nm for Ag@AuNPs and Au@AgNPs, respectively. The two particle systems were subsequently applied to spectroscopically and visually detect anti-SEA Ab-SEA interactions. Upon the addition of SEA, large red shifts of the LSPR band were observed spectroscopically and the limits of detection (LODs) were estimated to be 0.2 and 0.4 nM for Au@AgNPs and Ag@AuNPs, respectively. Although the two sets of NPs gave almost identical LODs, the Ag@AuNPs whose initial position of the LSPR band was tuned in the cyan to green region (∼500 nm) displayed a substantially more distinct color change from orange to red, as revealed by the naked eye. We foresee significant potential to this strategy in medical diagnostics and environmental monitoring, especially when basic laboratory infrastructure is sparse or nonexistent.
局部表面等离子体共振(LSPR)现象为生物检测提供了一种多功能特性。在这里,通过肉眼读取,利用这一独特特性构建了一种均相光学生物传感器,可用于检测溶液中的葡萄球菌肠毒素 A(SEA),检测下限低至非常低的水平。如果 LSPR 带的初始位置位于青色区域,那么即使纳米粒子(NPs)表面附近的折射率变化引起的微小红移(约 2-3nm),也会使光吸收从青色变为绿色,并通过互补色的变化变得肉眼可见。在这项工作中,我们旨在合成两种基于组成复杂的核壳 NPs-Ag 壳的 NPs(Au@AgNPs)和 Ag 内金纳米壳(Ag@AuNPs)的 NPs。通过控制壳的厚度及其表面化学性质,并结合抗 SEA 抗体(Ab),将 LSPR 带调谐至近 495nm 和 520nm,分别用于 Ag@AuNPs 和 Au@AgNPs。随后,将这两种粒子系统应用于光谱学和视觉检测抗 SEA Ab-SEA 相互作用。当加入 SEA 时,在光谱上观察到 LSPR 带的大幅红移,并且对于 Au@AgNPs 和 Ag@AuNPs,检测限(LOD)分别估计为 0.2 和 0.4 nM。尽管两组 NPs 给出了几乎相同的 LOD,但 LSPR 带的初始位置调谐到青色到绿色区域(约 500nm)的 Ag@AuNPs 显示出从橙色到红色的颜色变化更加明显,这可以通过肉眼观察到。我们预计这种策略在医学诊断和环境监测方面具有重要的潜力,特别是在基本实验室基础设施匮乏或不存在的情况下。
ACS Appl Mater Interfaces. 2019-12-5
Biosensors (Basel). 2019-6-10
Biosens Bioelectron. 2015-11-28
Spectrochim Acta A Mol Biomol Spectrosc. 2024-4-15
ACS Appl Mater Interfaces. 2013-3-21
Phys Chem Chem Phys. 2015-7-28
Bioresour Bioprocess. 2025-4-12
Front Med (Lausanne). 2025-3-19
Nanoscale Adv. 2024-12-9
ACS Phys Chem Au. 2024-10-17
Nanomaterials (Basel). 2024-10-10
Mikrochim Acta. 2024-9-26