文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于局域表面等离子体共振的裸眼毒素生物传感用核壳金/银纳米粒子

Core-Shell Gold/Silver Nanoparticles for Localized Surface Plasmon Resonance-Based Naked-Eye Toxin Biosensing.

机构信息

Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface (LRS) , 4 Place Jussieu , F 75005 Paris , France.

Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM) , 4 Place Jussieu , F 75005 Paris , France.

出版信息

ACS Appl Mater Interfaces. 2019 Dec 18;11(50):46462-46471. doi: 10.1021/acsami.9b14980. Epub 2019 Dec 5.


DOI:10.1021/acsami.9b14980
PMID:31744295
Abstract

The localized surface plasmon resonance (LSPR) phenomenon provides a versatile property for biodetection. Herein, this unique feature was employed to build a homogeneous optical biosensor to detect staphylococcal enterotoxin A (SEA) in solution down to very low levels by naked-eye readout. If the initial position of the LSPR band is located in the cyan region, even a small red shift (∼2-3 nm) induced by a refractive index change close to the surface of nanoparticles (NPs) could make the light absorption transit from cyan to green and become visually detectable via a concomitant change in the complementary colors. In this work, we aimed at synthesizing two types of NPs based on compositionally complex core-shell NPs-Ag shells on AuNPs (Au@AgNPs) and Ag inside gold nanoshells (Ag@AuNPs). By controlling the thickness of the shells and their surface chemistry with anti-SEA antibody (Ab), the LSPR band was tuned to near 495 and 520 nm for Ag@AuNPs and Au@AgNPs, respectively. The two particle systems were subsequently applied to spectroscopically and visually detect anti-SEA Ab-SEA interactions. Upon the addition of SEA, large red shifts of the LSPR band were observed spectroscopically and the limits of detection (LODs) were estimated to be 0.2 and 0.4 nM for Au@AgNPs and Ag@AuNPs, respectively. Although the two sets of NPs gave almost identical LODs, the Ag@AuNPs whose initial position of the LSPR band was tuned in the cyan to green region (∼500 nm) displayed a substantially more distinct color change from orange to red, as revealed by the naked eye. We foresee significant potential to this strategy in medical diagnostics and environmental monitoring, especially when basic laboratory infrastructure is sparse or nonexistent.

摘要

局部表面等离子体共振(LSPR)现象为生物检测提供了一种多功能特性。在这里,通过肉眼读取,利用这一独特特性构建了一种均相光学生物传感器,可用于检测溶液中的葡萄球菌肠毒素 A(SEA),检测下限低至非常低的水平。如果 LSPR 带的初始位置位于青色区域,那么即使纳米粒子(NPs)表面附近的折射率变化引起的微小红移(约 2-3nm),也会使光吸收从青色变为绿色,并通过互补色的变化变得肉眼可见。在这项工作中,我们旨在合成两种基于组成复杂的核壳 NPs-Ag 壳的 NPs(Au@AgNPs)和 Ag 内金纳米壳(Ag@AuNPs)的 NPs。通过控制壳的厚度及其表面化学性质,并结合抗 SEA 抗体(Ab),将 LSPR 带调谐至近 495nm 和 520nm,分别用于 Ag@AuNPs 和 Au@AgNPs。随后,将这两种粒子系统应用于光谱学和视觉检测抗 SEA Ab-SEA 相互作用。当加入 SEA 时,在光谱上观察到 LSPR 带的大幅红移,并且对于 Au@AgNPs 和 Ag@AuNPs,检测限(LOD)分别估计为 0.2 和 0.4 nM。尽管两组 NPs 给出了几乎相同的 LOD,但 LSPR 带的初始位置调谐到青色到绿色区域(约 500nm)的 Ag@AuNPs 显示出从橙色到红色的颜色变化更加明显,这可以通过肉眼观察到。我们预计这种策略在医学诊断和环境监测方面具有重要的潜力,特别是在基本实验室基础设施匮乏或不存在的情况下。

相似文献

[1]
Core-Shell Gold/Silver Nanoparticles for Localized Surface Plasmon Resonance-Based Naked-Eye Toxin Biosensing.

ACS Appl Mater Interfaces. 2019-12-5

[2]
Gold nanoparticle-based localized surface plasmon immunosensor for staphylococcal enterotoxin A (SEA) detection.

Anal Bioanal Chem. 2017-10

[3]
Improving the selective naked-eye detection of COVID-19 mediated by simultaneously using three different target oligonucleotides coated on plasmonic AuNPs/hexagonal Ag@AuNPs.

J Biomol Struct Dyn. 2023

[4]
Silver-Based Plasmonic Nanoparticles for and Their Use in Biosensing.

Biosensors (Basel). 2019-6-10

[5]
Eco-friendly microwave-assisted green and rapid synthesis of well-stabilized gold and core-shell silver-gold nanoparticles.

Carbohydr Polym. 2015-10-9

[6]
A plasmonic colorimetric strategy for biosensing through enzyme guided growth of silver nanoparticles on gold nanostars.

Biosens Bioelectron. 2015-11-28

[7]
Silver nanoparticles-based localized surface plasmon resonance biosensor for Escherichia coli detection.

Spectrochim Acta A Mol Biomol Spectrosc. 2024-4-15

[8]
Ultrathin gold-shell coated silver nanoparticles onto a glass platform for improvement of plasmonic sensors.

ACS Appl Mater Interfaces. 2013-3-21

[9]
Colorimetric plasmon sensors with multilayered metallic nanoparticle sheets.

Phys Chem Chem Phys. 2015-7-28

[10]
A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles.

J Am Chem Soc. 2002-9-4

引用本文的文献

[1]
Synthesis of novel MgO-ZnO nanocomposite using Pluchea indica leaf extract and study of their biological activities.

Bioresour Bioprocess. 2025-4-12

[2]
Localization of fluorescent gold nanoparticles throughout the eye after topical administration.

Front Med (Lausanne). 2025-3-19

[3]
Silver Nanoparticles (AgNPs): Comprehensive Insights into Bio/Synthesis, Key Influencing Factors, Multifaceted Applications, and Toxicity-A 2024 Update.

ACS Omega. 2025-2-18

[4]
Parametric Cyclic Voltammetric Analysis of an Electrochemical Aptasensor for Iron-Regulated Surface Determinant Protein A Detection.

Micromachines (Basel). 2025-1-30

[5]
Leveraging generative neural networks for accurate, diverse, and robust nanoparticle design.

Nanoscale Adv. 2024-12-9

[6]
Atomistic Multiscale Modeling of Colloidal Plasmonic Nanoparticles.

ACS Phys Chem Au. 2024-10-17

[7]
Silver Nanoparticles in Therapeutics and Beyond: A Review of Mechanism Insights and Applications.

Nanomaterials (Basel). 2024-10-10

[8]
Biomaterials for reliable wearable health monitoring: Applications in skin and eye integration.

Biomaterials. 2025-3

[9]
Using gold-based nanomaterials for fighting pathogenic bacteria: from detection to therapy.

Mikrochim Acta. 2024-9-26

[10]
Bimetallic nanocolloidal plasmonic array for polyphenol characterization and calibration-free antioxidant capacity evaluation.

Mikrochim Acta. 2024-9-25

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索