Laufer Ilan, Mizrahi Dor, Zuckerman Inon
Department of Industrial Engineering and Management, Ariel University, Ariel, Israel.
Front Psychol. 2024 Jan 22;15:1326791. doi: 10.3389/fpsyg.2024.1326791. eCollection 2024.
Attachment styles are crucial in human relationships and have been explored through neurophysiological responses and EEG data analysis. This study investigates the potential of EEG data in predicting and differentiating secure and insecure attachment styles, contributing to the understanding of the neural basis of interpersonal dynamics.
We engaged 27 participants in our study, employing an XGBoost classifier to analyze EEG data across various feature domains, including time-domain, complexity-based, and frequency-based attributes.
The study found significant differences in the precision of attachment style prediction: a high precision rate of 96.18% for predicting insecure attachment, and a lower precision of 55.34% for secure attachment. Balanced accuracy metrics indicated an overall model accuracy of approximately 84.14%, taking into account dataset imbalances.
These results highlight the challenges in using EEG patterns for attachment style prediction due to the complex nature of attachment insecurities. Individuals with heightened perceived insecurity predominantly aligned with the insecure attachment category, suggesting a link to their increased emotional reactivity and sensitivity to social cues. The study underscores the importance of time-domain features in prediction accuracy, followed by complexity-based features, while noting the lesser impact of frequency-based features. Our findings advance the understanding of the neural correlates of attachment and pave the way for future research, including expanding demographic diversity and integrating multimodal data to refine predictive models.
依恋风格在人际关系中至关重要,并且已经通过神经生理反应和脑电图数据分析进行了探索。本研究调查了脑电图数据在预测和区分安全型与不安全型依恋风格方面的潜力,有助于理解人际动态的神经基础。
我们招募了27名参与者参与研究,采用XGBoost分类器分析跨各种特征域的脑电图数据,包括时域、基于复杂度和基于频率的属性。
研究发现依恋风格预测的精度存在显著差异:预测不安全型依恋的高精度率为96.18%,而预测安全型依恋的精度较低,为55.34%。考虑到数据集不平衡,平衡准确率指标表明总体模型准确率约为84.14%。
这些结果凸显了由于依恋不安全感的复杂性质,利用脑电图模式进行依恋风格预测所面临的挑战。感知到的不安全感增强的个体主要与不安全型依恋类别相符,这表明与他们增强的情绪反应性和对社会线索的敏感性有关。该研究强调了时域特征在预测准确性方面的重要性,其次是基于复杂度的特征,同时指出基于频率的特征影响较小。我们的研究结果推进了对依恋神经相关性的理解,并为未来研究铺平了道路,包括扩大人口多样性和整合多模态数据以完善预测模型。