Suppr超能文献

噬菌体溶素与柠檬酸对革兰氏阴性猕猴桃病原菌 pv. 的协同抗菌作用。

Antibacterial synergy between a phage endolysin and citric acid against the Gram-negative kiwifruit pathogen pv. .

机构信息

Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.

Bioprotection Aotearoa, University of Otago, Dunedin, New Zealand.

出版信息

Appl Environ Microbiol. 2024 Mar 20;90(3):e0184623. doi: 10.1128/aem.01846-23. Epub 2024 Feb 6.

Abstract

UNLABELLED

Horticultural diseases caused by bacterial pathogens provide an obstacle to crop production globally. Management of the infection of kiwifruit by the Gram-negative phytopathogen pv. () currently includes copper and antibiotics. However, the emergence of bacterial resistance and a changing regulatory landscape are providing the impetus to develop environmentally sustainable antimicrobials. One potential strategy is the use of bacteriophage endolysins, which degrade peptidoglycan during normal phage replication, causing cell lysis and the release of new viral progeny. Exogenous use of endolysins as antimicrobials is impaired by the outer membrane of Gram-negative bacteria that provides an impermeable barrier and prevents endolysins from accessing their target peptidoglycan. Here, we describe the synergy between citric acid and a phage endolysin, which results in a reduction of viable below detection. We show that citric acid drives the destabilization of the outer membrane via acidification and sequestration of divalent cations from the lipopolysaccharide, which is followed by the degradation of the peptidoglycan by the endolysin. Scanning electron microscopy revealed clear morphological differences, indicating cell lysis following the endolysin-citric acid treatment. These results show the potential for citric acid-endolysin combinations as a possible antimicrobial approach in agricultural applications.

IMPORTANCE

The phytopathogen pv. () causes major impacts to kiwifruit horticulture, and the current control strategies are heavily reliant on copper and antibiotics. The environmental impact and increasing resistance to these agrichemicals are driving interest in alternative antimicrobials including bacteriophage-derived therapies. In this study, we characterize the endolysin from the which infects . When combined with citric acid, this endolysin displays an impressive antibacterial synergy to reduce viable below the limit of detection. The use of citric acid as a synergistic agent with endolysins has not been extensively studied and has never been evaluated against a plant pathogen. We determined that the synergy involved a combination of the chelation activity of citric acid, acidic pH, and the specific activity of the ΦPsa374 endolysin. Our study highlights an exciting opportunity for alternative antimicrobials in agriculture.

摘要

未加标签

由细菌病原体引起的园艺疾病是全球作物生产的障碍。目前,对革兰氏阴性植物病原菌 pv.()感染猕猴桃的管理包括使用铜和抗生素。然而,细菌耐药性的出现和不断变化的监管环境正在推动开发环境可持续的抗菌药物。一种潜在的策略是使用噬菌体裂解酶,它在正常噬菌体复制过程中降解肽聚糖,导致细胞裂解并释放新的病毒后代。由于革兰氏阴性细菌的外膜提供了不可渗透的屏障,阻止裂解酶接触其靶肽聚糖,因此外源性使用裂解酶作为抗菌药物受到了限制。在这里,我们描述了柠檬酸与噬菌体裂解酶之间的协同作用,导致活菌数减少到检测限以下。我们表明,柠檬酸通过酸化和从脂多糖中螯合二价阳离子来破坏外膜的稳定性,随后由裂解酶降解肽聚糖。扫描电子显微镜显示出明显的形态差异,表明在裂解酶-柠檬酸处理后发生了细胞裂解。这些结果表明,柠檬酸-裂解酶组合作为农业应用中一种潜在的抗菌方法具有潜力。

重要性

植物病原菌 pv.()对猕猴桃园艺业造成了重大影响,目前的控制策略严重依赖于铜和抗生素。这些农用化学品的环境影响和耐药性的增加促使人们对替代抗菌药物产生了兴趣,包括噬菌体衍生的疗法。在这项研究中,我们对感染的噬菌体的裂解酶进行了表征。当与柠檬酸结合使用时,这种裂解酶表现出令人印象深刻的抗菌协同作用,将活菌数减少到检测限以下。柠檬酸作为裂解酶的协同剂的使用尚未得到广泛研究,也从未针对植物病原体进行过评估。我们确定,协同作用涉及柠檬酸的螯合活性、酸性 pH 值和 ΦPsa374 裂解酶的特异性活性。我们的研究强调了农业中替代抗菌药物的一个令人兴奋的机会。

相似文献

引用本文的文献

本文引用的文献

2
InterPro in 2022.InterPro 在 2022 年。
Nucleic Acids Res. 2023 Jan 6;51(D1):D418-D427. doi: 10.1093/nar/gkac993.
4
ColabFold: making protein folding accessible to all.ColabFold:让蛋白质折叠变得人人可用。
Nat Methods. 2022 Jun;19(6):679-682. doi: 10.1038/s41592-022-01488-1. Epub 2022 May 30.
9
Unlocking the next generation of phage therapy: the key is in the receptors.解锁下一代噬菌体疗法:关键在于受体。
Curr Opin Biotechnol. 2021 Apr;68:115-123. doi: 10.1016/j.copbio.2020.10.002. Epub 2020 Nov 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验