Suppr超能文献

基于最大密度投影 2D 标注的 3D 血管分割。

3D Vascular Segmentation Supervised by 2D Annotation of Maximum Intensity Projection.

出版信息

IEEE Trans Med Imaging. 2024 Jun;43(6):2241-2253. doi: 10.1109/TMI.2024.3362847. Epub 2024 Jun 3.

Abstract

Vascular structure segmentation plays a crucial role in medical analysis and clinical applications. The practical adoption of fully supervised segmentation models is impeded by the intricacy and time-consuming nature of annotating vessels in the 3D space. This has spurred the exploration of weakly-supervised approaches that reduce reliance on expensive segmentation annotations. Despite this, existing weakly supervised methods employed in organ segmentation, which encompass points, bounding boxes, or graffiti, have exhibited suboptimal performance when handling sparse vascular structure. To alleviate this issue, we employ maximum intensity projection (MIP) to decrease the dimensionality of 3D volume to 2D image for efficient annotation, and the 2D labels are utilized to provide guidance and oversight for training 3D vessel segmentation model. Initially, we generate pseudo-labels for 3D blood vessels using the annotations of 2D projections. Subsequently, taking into account the acquisition method of the 2D labels, we introduce a weakly-supervised network that fuses 2D-3D deep features via MIP to further improve segmentation performance. Furthermore, we integrate confidence learning and uncertainty estimation to refine the generated pseudo-labels, followed by fine-tuning the segmentation network. Our method is validated on five datasets (including cerebral vessel, aorta and coronary artery), demonstrating highly competitive performance in segmenting vessels and the potential to significantly reduce the time and effort required for vessel annotation. Our code is available at: https://github.com/gzq17/Weakly-Supervised-by-MIP.

摘要

血管结构分割在医学分析和临床应用中起着至关重要的作用。由于在 3D 空间中对血管进行注释的复杂性和耗时性,完全监督的分割模型的实际应用受到了阻碍。这促使人们探索依赖于昂贵的分割注释的弱监督方法。尽管如此,现有的用于器官分割的弱监督方法,包括点、边界框或涂鸦,在处理稀疏血管结构时表现出不佳的性能。为了解决这个问题,我们采用最大强度投影(MIP)将 3D 体积的维数降低到 2D 图像,以进行高效注释,并且 2D 标签用于为 3D 血管分割模型的训练提供指导和监督。首先,我们使用 2D 投影的注释为 3D 血管生成伪标签。然后,考虑到 2D 标签的采集方法,我们引入了一个弱监督网络,通过 MIP 融合 2D-3D 深度特征,以进一步提高分割性能。此外,我们整合置信度学习和不确定性估计来细化生成的伪标签,然后对分割网络进行微调。我们的方法在五个数据集(包括脑血管、主动脉和冠状动脉)上进行了验证,在血管分割方面表现出了极具竞争力的性能,并且有可能显著减少血管注释所需的时间和精力。我们的代码可在:https://github.com/gzq17/Weakly-Supervised-by-MIP 获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验